K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2016

+ ta có 
5n^3 - 9n^2 + 15n - 27 = (5n - 9)(n^2 + 3) 
- với n = 0 ta có 5n^3 - 9n^2 + 15n - 27 = -27 loại 
- với n = 1 ta có 5n^3 - 9n^2 + 15n - 27 = -16 loại 
- với n = 2 ta có 5n^3 - 9n^2 + 15n - 27 = 7 nhận 
- với n > 2 ta có 5n - 9 > 1 và n^2 + 3 > 7 => không thể là số nguyên tố

3 tháng 7 2016

t em nha 

27 tháng 9 2018

ta có: gọi A là đa thức trên

A=\(5n^3-9n^2+15n-27\)

=\(n^2\left(5n-9\right)+3\left(5n-9\right)\)

=\(\left(5n-9\right)\left(n^2+3\right)\)

vì: \(n^2+2>0\Rightarrow n^2+3>1\)

\(\Rightarrow\)\(n^2+3\) không thể bằng 1 \(\forall n\in N\)

\(\Rightarrow5n-9=1\Rightarrow n=2\left(n\in N\right)\)

Vậy n=2 thì A là số nguyên tố (A=7)

NV
10 tháng 8 2021

Đặt \(N=12n^2-5n-25=\left(3n-5\right)\left(4n+5\right)\)

Do n tự nhiên nên \(\left(4n+5\right)-\left(3n-5\right)=n+10>0\Rightarrow4n+5>3n-5\)

N luôn có ít nhất 2 ước số phân biệt là \(3n-5\) và \(4n+5\)

\(\Rightarrow\) N nguyên tố khi và chỉ khi: \(\left\{{}\begin{matrix}3n-5=1\\4n+5\text{ là số nguyên tố}\end{matrix}\right.\)

\(3n-5=1\Rightarrow n=2\)

Khi đó \(4n+5=13\) là số nguyên tố (thỏa mãn)

Vậy \(n=2\)

22 tháng 8 2021

Cảm ơn thầy ạ.

 

23 tháng 10 2019

Với n thuộc Z

Có: \(A=2n^2+5n-3=2n^2+6n-n-3=2n\left(n+3\right)-\left(n+3\right)=\left(2n-1\right)\left(n+3\right)\)

=> \(\left|A\right|=\left|\left(n+3\right)\left(2n-1\right)\right|\)

Để | A | là số nguyên tố \(n+3=\pm1\)hoặc \(2n-1=\pm1\)

+) Với n + 3 = 1 => n =-2  => | A | = 5 là số nguyên tố => n = - 2 thỏa mãn.

+) Với n + 3 = - 1 => n = - 4 => | A | = 9 không là số nguyên tố => loại

+) Với 2n -1 = 1 => n =1 => |A | = 4 loại

+) Với 2n -1 =-1 => n = 0 => | A | = 3 là số nguyên tố => n = 0 thỏa mãn.

Vậy n=-2 hoặc n =0.