Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là ƯCLN của n + 1 và 2n + 3
Khi đó : n + 1 chia hết cho d , 2n + 3 chia hết cho d
<=> 2(n + 1) chia hết cho d , 2n + 3 chia hết cho d
<=> 2n + 2 chia hết cho d , 2n + 3 chia hết cho d
=> (2n + 3) - (2n + 2) chia hết cho d
=> 1 chia hết cho d
Vậy \(\frac{n+1}{2n+3}\) là phân số tối giản
a,Gọi d là ƯCLN của n+1 và 2n+3(d thuộc Z/ d khác 0)
=> n+1 chia hết cho d; 2n+ 3 chia hết cho d
=>(n+1)-(2n+3) chia hết cho d
=>1chia hết cho d=> d thuộc Ư của 1
=.> \(\frac{n+1}{2n+3}\)là ps tối giản
b, Gọi d là ƯCLN (2n+3;4n+8)(d thuộc Z/ d khác 0)
=>2n+3 chia hết cho d;4n+8 chia hết cho d
=>(2n+3)-(4n+8) chia hết cho d
=>(2n+3)-(2n+4) chia hết cho d
=>-1 chia hết cho d
=>\(\frac{2n+3}{4n+8}\)là ps tối giản
Gọi ước chung của 4n+1 và 6n+1 là số tự nhiên x.Ta có :
4n+1 và 6n+1 thuộc B(x) => 6(4n+1); 4(6n+1) hay 24n+6;24n+4 thuộc B(x)
=> (24n+6) - (24n+4) = 2 thuộc B(x) => x = 1;2 mà 4n;6n chẵn nên 4n+1;6n+1 lẻ (không thuộc B(2) )
=> x khác 2 và bằng 1 => 4n+1;6n+1 là 2 số nguyên tố cùng nhau
=> 4n+1 / 6n+1 là phân số tối giản (n thuộc N)