K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2020

a, \(\frac{2n+2}{2n-1}=\frac{2n-1+3}{2n-1}=1+\frac{3}{2n-1}\)

Để \(2n+2⋮2n-1\text{thì}2n-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Xét bảng ( tự xét nha )

KL

b, \(\frac{2n-5}{n+3}=\frac{2\left(n+3\right)-11}{n+3}=2-\frac{11}{n+3}\)

\(\text{Để}2n-5⋮n+3\text{thì}n+3\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

Xét bảng ( tự xét nha )

KL

14 tháng 3 2020

nhìn cậu làm,hình như sai thì phải

3 tháng 2 2018

2)

a) 2n+5 chia het cho n-1 

=> 2(n-1) +7 chia het cho n-1 

=: n-1 thuoc uoc cua 7 den day ke bang la xong. 

may cau con lai lam tuong tu

3 tháng 2 2018

dài quá ko mún làm

8 tháng 10 2017

a) (n+2) \(⋮\) (n-1)

vì (n-1)\(⋮\) (n-1)

=>(n+2)-(n-1)\(⋮\left(n-1\right)\)

=>(n+2-n+1)\(⋮\) (n-1)

=> 3\(⋮\) (n-1)

=>(n-1)\(\in\) Ư(3) = { \(\pm\)1,\(\pm\)3}

ta có bảng

n-1 -1 1 -3

3

n 0 2 -2 4
loại

vậy n\(\in\) { 0;2;4}

8 tháng 10 2017

b) \(\left(2n+7\right)⋮\left(n+1\right)\)

\(\left(n+1\right)⋮\left(n+1\right)\)

=>\(2\left(n+1\right)⋮\left(n+1\right)\)

=> \(\left(2n+2\right)⋮\left(n+1\right)\)

=>\(\left(2n+7\right)-\left(2n+2\right)⋮\left(n+1\right)\)

=>\(\left(2n+7-2n-2\right)⋮\left(n+1\right)\)

=>\(5⋮\left(n+1\right)\)

=> \(\left(n+1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

TA CÓ BẢNG

n+1 -5 -1 1 5
n -6 -2 0 4
loại loại

vậy \(n\in\left\{0;4\right\}\)

17 tháng 8 2016

a) n + 2 chia hết cho n - 1

=> n - 1 + 3 chia hết cho n - 1

Do n - 1 chia hết cho n - 1 => 3 chia hết cho n - 1

Mà n thuộc N => n - 1 > hoặc = -1

=> n - 1 thuộc {-1 ; 1 ; 3}

=> n thuộc {0 ; 2 ; 4}

Những câu còn lại lm tương tự

17 tháng 8 2016

Giải:

a) \(n+2⋮n-1\)

\(\Rightarrow\left(n-1\right)+3⋮n-1\)

\(\Rightarrow3⋮n-1\)

\(\Rightarrow n-1\in\left\{\pm1;\pm3\right\}\)

+) \(n-1=1\Rightarrow n=2\)

+) \(n-1=-1\Rightarrow n=0\)

+) \(n-1=3\Rightarrow n=4\)

+) \(n-1=-3\Rightarrow n=-2\)

Vậy \(n\in\left\{2;0;4;-2\right\}\)

b) \(2n+7⋮n+1\)

\(\Rightarrow\left(2n+2\right)+5⋮n+1\)

\(\Rightarrow2\left(n+1\right)+5⋮n+1\)

\(\Rightarrow5⋮n+1\)

\(\Rightarrow n+1\in\left\{\pm1;\pm5\right\}\)

+) \(n+1=1\Rightarrow n=0\)

+) \(n+1=-1\Rightarrow n=-2\)

+) \(n+1=3\Rightarrow n=2\)

+) \(n+1=-3\Rightarrow n=-4\)

Vậy \(n\in\left\{0;-2;2;-4\right\}\)

5 tháng 7 2018

Vì 3 n chia hết cho (5-2n)

=>2.3n+3(5-2n)=15 chia hết cho 5-2n

=>5-2n thuộc Ư(15)={1,3,5,15,-1,-3-5-15}

Mặt khác 5-2n nhỏ hơn hoặc bằng 5

5-2n thuộc {-15,-5,-3,-1,1,3,5}

=>N thuộc { 10,5,4,3,2,1,0}

Vì 3n chia hết cho 5-2n

=>2.3n+3(5-2n)=15 chia hết cho 5 - 2n

=> 5-2n thuộc U (15)€{1,3,5,15,-1,-3,-5,-15}

Mặt khác 5 trừ 2 n nhỏ hơn hoặc bằng 5

=>5-2n€{-15,-5,-3,-1,1,3,5}

=>N€{10,5,4,3,2,1,0}

27 tháng 9 2015

a) Ta có: n+4 chia hết cho 4.

Suy ra 4 chia hết cho n.Vậy n=1;2

b, 3n+7 chia hết cho n => 7 chia hết n

Vậy n=1

còn nhiều quá 

24 tháng 1 2016

=>(n2+3n)+(3n+9)+2 chia hết cho n+3

=>n(n+3)+3(n+3)+2 chia hết cho n+3

=>(n+3)(n+3)+2 chia hết cho n+3

Mà (n+3)(n+3) chia hết cho n+3

=>2 chia hết cho n+3

=> n+3 thuộc Ư(2)={1;2;-1;-2}

=>n thuộc {-2;-1;-4;-5}

24 tháng 1 2016

Để A nguyên

=>n2-3n+1 chia hết cho n+1

=>(n2-1)-(3n+3)+1+1-3 chia hết cho n+1

=>(n-1)(n+1)-3(n+1)-1 chia hết cho n+1

Mà (n-1)(n+1) và 3(n+1) chia hết cho n+1

=>1 chia hết cho n+1

=>n+1 thuộc Ư(1)={1;-1}

=>n thuộc {0;-2}

30 tháng 7 2021

 . .......................................................................................................................................jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

21 tháng 12 2020

biết rồi