K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2018

hay tra loi giup minh

10 tháng 4 2018

tra loi giup minh minh dang can gap

a) Để A có giá trị nguyên thì \(3n+9⋮n-4\)

\(\Rightarrow3n-9-3.\left(n-4\right)⋮n-4\)

\(\Rightarrow3n-9-3n+12⋮n-4\)

\(\Rightarrow3⋮n-4\Rightarrow n-4\inƯ\left(3\right)\)

\(\Rightarrow n-4\in\left\{-1;-2;-4;1;2;4\right\}\)

\(\Rightarrow n\in\left\{3;2;0;5;6;8\right\}\)

b) Để B có giá trị nguyên thì \(6n+5⋮2n-1\)

\(\Rightarrow6n+5-3.\left(2n-1\right)⋮2n-1\)

\(\Rightarrow6n+5-6n+3⋮2n-1\)

\(\Rightarrow8⋮2n-1\Rightarrow2n-1\inƯ\left(8\right)\)

Mà 2n - 1 là số lẻ \(\Rightarrow2n-1\in\left\{-1;1\right\}\)

\(\Rightarrow n\in\left\{0;1\right\}\)

8 tháng 6 2019

* Để A có giá trị nguyên thì 3n + 9 chia hết cho n - 4 

Có 3n + 9 = 3. ( n - 4 ) + 21 chia hết cho n - 4 

Mà 3. ( n - 4 ) chia hết cho n - 4  

     3 . ( n - 4 ) + 21 chia hết cho n - 4  <=> 21 chia hết cho n - 4 

=> n - 4 thuộc U ( 21 ) = { 1 ; 3 ; 7 ; 21 } 

n - 4 = 1 => n = 5 

n - 4 = 3 => n = 7 

n - 4 = 7 => n = 11 

n - 4 = 21 => n = 25 

Vậy n = { 5 ; 7 ; 11 ; 25 }

25 tháng 3 2018

1, Ta có : ĐK \(n\ne1\)

a, \(\frac{3n+4}{n-1}=\frac{3n-3+7}{n-1}=\frac{3\left(n-1\right)}{n-1}+\frac{7}{n-1}=1+\frac{7}{n-1}\)

để biểu thức có giá trị nguyện thì \(n-1\inƯ\left(7\right)\)

Ta có bảng sau:

n-1-17-7
n208-6

vậy n=-6, 0,2, 8

b, Ta có ĐK \(n\ne-\frac{1}{3}\)

\(\frac{6n-3}{3n+1}=\frac{6n+3-6}{3n+1}=\frac{3\left(3n+1\right)}{3n+1}-\frac{6}{3n+1}=3-\frac{6}{3n+1}\)

để biểu thúc có giá trị nguyên thì \(3n+1\inƯ\left(6\right)\)

kẻ bảng tìm giá trị của n=0,-2/3,1/3, -1, 2/3, -4/3, 5/3, -7/3

c,ĐK : \(n\ne2\) tương tự ta phân tích \(\frac{n^2+3n-1}{n-2}=\frac{n^2-4n+4+7n-5}{n-2}=\frac{\left(n-2\right)^2}{n-2}+\frac{7n-5}{n-2}\)

\(=n-2+\frac{7n-14+9}{n-2}=\left(n-2\right)+7+\frac{9}{n-2}\)

để biểu thức có giá trị nguyên thì \(n-2\inƯ\left(9\right)\)

kẻ bảng tìm giá trị n

d,  ĐK : \(n\ne1\)phân tích:

\(\frac{n^2+5}{n-1}=\frac{n^2-2n+1+2n+4}{n-1}=\frac{\left(n-1\right)^2}{n-1}+\frac{2n-2+6}{n-1}=\left(n-1\right)+2+\frac{6}{n-1}\)

để biểu thức có giá trị nguyên thì\(n-1\inƯ\left(6\right)\)

kẻ bảng tìm giá trị của n

2, a, để A là phân số thì \(2n+3\ne0\Leftrightarrow n\ne-\frac{3}{2}\)

b, để A là số nguyên thì\(\frac{4n+1}{2n+3}=\frac{4n+6-5}{2n+3}=\frac{2\left(2n+3\right)}{2n+3}-\frac{5}{2n+3}\)

hay \(2n+3\notinƯ\left(5\right)\)

kẻ bảng tìm giá trị của n

c, để A lớn nhất thì \(2-\frac{5}{2n+3}\) cũng lớn nhất

\(\frac{5}{2n+3}\)phải nhỏ nhất\(\Rightarrow\)\(2n+3\)lớn nhất  và < 0 vì 5 là số dương

nên\(2n+3=-1\Rightarrow n=-2\)

thay n vào tính A vậy max A =7

để A bé nhất thì\(2-\frac{5}{2n+3}\)cũng bé nhất

\(\Rightarrow\)\(\frac{5}{2n+3}\)lớn nhất\(\Rightarrow\)2n+3 bé nhất và phải lớn hơn 0 

vậy\(2n+3=1\Rightarrow n=-1\)

thay n vào để tìm min A=-3

4 tháng 7 2017

Ta có : \(\frac{n-3}{n+4}=\frac{n+4-7}{n+4}=\frac{n+4}{n+4}-\frac{7}{n+4}=1-\frac{7}{n+4}\)

Để \(\frac{n-3}{n+4}\in Z\) thì 7 chia hết cho n + 4

=> n + 4 thuộc Ư(7) = {-7;-11;7}

Ta có bảng : 

n + 4-7-117
n-11-5-33
29 tháng 7 2020

Ta có :

\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)

a. Để A nguyên thì \(\frac{13}{2n+3}\in Z\)

\(\Rightarrow2n+3\in\left\{-13;-1;1;13\right\}\)

\(\Rightarrow2n\in\left\{-16;-4;-2;10\right\}\)

\(\Rightarrow n\in\left\{-8;-2;-1;5\right\}\)

b. Bổ sung điều kiện : A thuộc Z 

Để  \(A_{max}\) thì \(\frac{13}{2n+3}_{min}\)

\(\Leftrightarrow2n+3_{max}\in Z^-\)

Mà \(A\in Z\Leftrightarrow2n+3=-13\) hoặc \(2n+3=-1\)

\(\Rightarrow A_{max}=3-\frac{13}{-1}=16\Leftrightarrow n=-2\left(tm:n\in Z\right)\)

Vậy Amax = 16 <=> n = -2

29 tháng 6 2022

Bn ơi