Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Để (n+3) chia hết cho (n+3) thì n={0:1:2:3:4:5:6:7:8:9}
b)(2n+5)\(⋮n+2\)
2(n+2)+1 chia hết cho (n+2)
Do 2(n+2)+1 chia hết cho n+2 nên 1 chia hết cho n+2
n+2=Ư(1)={1}
Lập bảng:
n+2 | 1 |
n | loại |
Vậy n=\(\varnothing\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
4n+3 chia hết cho 2n+1
=>2(2n+1)+1 chia hết cho 2n+1
=>2n+1=1
=>2n=0
=>n=0
a)
\(n+4⋮n+1\Leftrightarrow\left(n+1\right)+3⋮n+1\)
\(3⋮n+1\)(vì n+1 chia hết cho n+1)
\(\Rightarrow n+1\inƯ\left(3\right)=\left\{1;3\right\}\)
\(n+1=1\Rightarrow n=0\)
\(n+1=3\Rightarrow n=2\)
Vậy \(n\in\left\{0;2\right\}\)
b)
\(2n+3⋮n+1\Leftrightarrow2\left(n+1\right)+1⋮n+1\)
\(\Rightarrow1⋮n+1\)(vì 2(n+1) chia hết cho n+1)
\(\Rightarrow n+1\inƯ\left(1\right)=\left\{1\right\}\)
\(\Rightarrow n+1=1\Rightarrow n=0\)
Vậy \(n=0\)
a)
(n + 4 ) chia hết ( n + 1 )
(n + 1 ) +3 chia hết ( n + 1 )
vì n+1 luôn chia hết cho n+1 nên để (n + 1 ) +3 chia hết ( n + 1 ) thì 3 cũng phải chia hết cho n+1
=> n+1 thuộc Ư( 3 )
b)
tương tự phần a
cho mk nha
ta có 4n+ 7 chia hết cho 2n +1 (1)
2n+ 1 chia hết cho 2n+1
=> 2(2n+1) chia hết cho 2n+1
=> 4n+2 chia hết cho 2n+1 (2)
từ (1) và (2)
Gọi số tự nhiên cần tìm là A và A nhỏ nhất
A chia 4 dư 3 suy ra A + 1 chia hết cho 4 (1)
A chia 5 dư 4 suy ra A + 1 chia hết cho 5 (2)
A chia 6 dư 5 suy ra A + 1 chia hết cho 6 (3)
Từ (1),(2) và (3) suy ra A + 1 thuộc BC (4,5,6)
4 = 22 ; 5 = 5 : 6 = 2 . 3
BCNN (4,5,6) = 22 . 3 . 5 = 60
A + 1 = 60k ( k thuộc N )
(+) Với k = 0 thì A +1 = 0 suy ra không tồn tại A thuộc N
(+) Với k = 1 thì A + 1 = 60 suy ra A = 59 không chia hết cho 7 ( loại )
(+) Với k = 2 thì A + 1 = 120 suy ra A = 119 chia hết cho 7 ( thỏa mãn )
Do A là số nhỏ nhất nên A = 119
1. n không chia hết cho 3 suy ra n = 3k +1 hoặc n = 3k +2.
- nếu n = 3k +1 thì 5n + 1 = 5(3k +1) +1 = 15k + 6 ⋮ 3.
- nếu n = 3k +2 thì 5n + 2 = 5(3k + 2) +2 = 15k + 12 ⋮ 3
2. p là số nguyên tố lớn hơn 3 nên p sẽ có dạng 6k + 1 hoặc 6k + 5.
nếu p là 6k + 1 thì p + 2 = 6k + 3 ⋮ 3, không là số nguyên tố
do đó p có dạng 6k+5, khi đó p + 1 = 6k : 6 ⋮ 6.
3.
x(1-y) + 2(1-y) = 5
(x+2)(1-y) = 5
xét các trường hợp : x + 2 = 1; 1 - y = 5 và x + 2 = 5, 1 - y =1
4. ta có: n\(^2\) + 3 = (n+1)(n-1) + 4 ⋮ (n-1) khi 4 ⋮ (n-1), khi đó (n-1) \(\in\) Ư(4) .
\(3n-4⋮n-1\)
\(3n-3-1⋮n-1\)
\(3\left(n-1\right)-1⋮n-1\)
Vì \(3\left(n-1\right)⋮n-1\)
\(\Rightarrow1⋮n-1\)
\(\Rightarrow n-1\inƯ\left(1\right)=\left\{1;-1\right\}\)
\(\Rightarrow n\in\left\{2;0\right\}\)
thank ạ