Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(n^2-n+2\) là số chính phương \(\Leftrightarrow n^2-n+2=a^2\left(a\in Z\right)\)
\(\Leftrightarrow4n^2-4n+8=4a^2\)
\(\left(4n^2-4n+1\right)+7=\left(2a\right)^2\)
\(\Leftrightarrow\left(2n-1\right)^2+7=\left(2a\right)^2\)
\(\Leftrightarrow\left(2n-1\right)^2-\left(2a\right)^2=-7\)
\(\Leftrightarrow\left(2n-2a-1\right)\left(2n+2a-1\right)=-7\)
=> 2n - 2a - 1 và 2n + 2a - 1 là ước của - 7
Đến đây liệt kê ước của - 7 rồi xét các TH !!!
ta có n^3-n=n(n^2-1)=(n-1)n(n+1) chia hết cho 3
=> n^3-n+2 chia 3 dư 2
mà số chính phương chia 3 dư 0 hoặc 1 suy ra vô nghiệm
Ta có; \(n^3-n=n^2.n-n=\left(n^2-1hay1^2\right).n=\left(n-1\right)\left(n+1\right)n\)
Vì n-1 ; n ; n+1 là ba số liên tiếp nên trong ba số chắc chắn có một thừa số chia hết cho 3.
Vậy \(\left(n^3-n\right)⋮3\)suy ra n\(^3\)-n + 2 chia cho 3 dư 2.
SCP không chia cho 3 dư 2 nên không có n sao cho số trên là SCP!
a, Với n = 1 thì \(n^3-n+2=1^3-1+2=2\)
=> Không phải là số chính phương
Với n = 2 thì \(n^3-n+2=2^3-2+2=8-2+2=8\)
=> Không phải là số chính phương
Với n > 2 thì \(n^3-n+2\)không phải là số chính phương vì \(\left[n-1\right]^2< n^3-\left[n-2\right]< n^2\)
b, Với n = 1 thì \(n^4-n+2=1^4-1+2=2\)
=> Không phải là số chính phương
Với n = 2 thì \(n^4-n+2=2^4-2+2=16=4^2\)=> Là số chính phương
Với n > 2 thì \(\left[n^2-1\right]^2< n^4-\left[n-2\right]< \left[n^2\right]^2\)
=> Không phải là số chính phương
Vậy n = 2
sữa chỗ sai
she doesn't go to the cinema withus last Sunday
A B C D
Giữa câu hỏi và caau trả lời có một sự liên quan không hề nhẹ