K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2020

Ta có: \(n^5+1=\left(n+1\right)\left(n^4-n^3+n^2-n+1\right)\)

      \(n^3+1=\left(n+1\right)\left(n^2-n+1\right)\) 

 \(n^5+1⋮n^3+1\)

\(\Leftrightarrow n^4-n^3+n^2-n+1⋮n^2-n+1\)

\(\Leftrightarrow n^2\left(n^2-n+1\right)-\left(n-1\right)⋮n^2-n+1\)

\(\Leftrightarrow n-1⋮n^2-n+1\)

\(\Rightarrow n\left(n-1\right)⋮n^2-n+1\)

\(\Leftrightarrow n^2-n+1-1⋮n^2-n+1\)

\(\Leftrightarrow1⋮n^2-n+1\)

\(\Leftrightarrow n\left(n-1\right)+1\inƯ\left(1\right)=\left\{1;-1\right\}\)

....

(Tính được giá trị của n rồi bạn nhớ thử lại nhé!!)

17 tháng 1 2020

Vì \(n\inℤ\)\(\frac{n^5+1}{n^3+1}\inℤ\)\(\Leftrightarrow\frac{n\left(n^5+1\right)}{n^3+1}=\frac{n^6+n}{n^3+1}=\frac{\left(n^6-1\right)+\left(n+1\right)}{n^3+1}=\frac{\left(n^3-1\right)\left(n^3+1\right)+\left(n+1\right)}{n^3+1}\)

\(=\left(n^3-1\right)+\frac{n+1}{n^3+1}=\left(n^3-1\right)+\frac{1}{n^2-n+1}\)

Vì \(n\inℤ\)\(\Rightarrow n^3-1\inℤ\)\(\Rightarrow\)Để biểu thức đã cho có giá trị nguyên thì \(1⋮\left(n^2-n+1\right)\)

\(\Rightarrow n^2-n+1\inƯ\left(1\right)=\left\{\pm1\right\}\)

TH1: \(n^2-n+1=-1\)\(\Leftrightarrow n^2-n+2=0\)( loại )

TH2: \(n^2-n+1=1\)\(\Leftrightarrow n\left(n-1\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}n=0\\n-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}n=0\\n=1\end{cases}}\)( thoả mãn )

Vậy \(n\in\left\{0;1\right\}\)

29 tháng 1 2020

=0 nha

28 tháng 8 2016

+ Do n không chia hết cho 3 => 4n không chia hết cho 3; 3 chia hết cho 3 => 4n + 3 không chia hết cho 3 => (4n + 3)2 không chia hết cho 3

=> (4n + 3)2 chia 3 dư 1 (1)

+ Do 4n + 3 lẻ => (4n + 3)2 lẻ => (4n + 3)chia 8 dư 1 (2)

Từ (1) và (2); do (3;8)=1 => (4n + 3)2 chia 24 dư 1

Mà 25 chia 24 dư 1

=> (4n + 3)2 - 25 chia hết cho 24 ( đpcm)

15 tháng 12 2016

làm câu