Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n^2+2n-1⋮\left(3n-1\right)\Rightarrow9\left(n^2+2n-1\right)=9n^2+18n-9=\left(3n-1\right)\left(3n+7\right)-2⋮\left(3n-1\right)\)
\(\Leftrightarrow2⋮\left(3n-1\right)\Leftrightarrow3n-1\inƯ\left(2\right)=\left\{-2,-1,1,2\right\}\Rightarrow n\in\left\{0,1\right\}\)(vì \(n\)nguyên)
Thử lại đều thỏa mãn.
2n+1 chia 5 dư 3=>2n+1-3 chia hết cho 5 hay 2n-2 chia hết cho 5
3n+3 chia hết cho 7
3n+3-(2n-2)chia hết cho 5 và 7
=>n+5 chia hết cho 5 và 7
mà (5,7)=1=> số chia hết cho 5 và 7 chia hết cho 5.7=35
vậy n+5 chia hết cho 35
n có dạng 35k+30
Trong một số trường hợp, có thể sử dụng mối quan hệ đặc biệt giữa ƯCLN, BCNN và tích của hai số nguyên dương a, b, đó là : ab = (a, b).[a, b], trong đó (a, b) là ƯCLN và [a, b] là BCNN của a và b. Việc chứng minh hệ thức này khụng khú :
Theo định nghĩa ƯCLN, gọi d = (a, b) => a = md ; b = nd với m, n thuộc Z+ ; (m, n) = 1 (*)
Từ (*) => ab = mnd2 ; [a, b] = mnd
=> (a, b).[a, b] = d.(mnd) = mnd2 = ab
=> ab = (a, b).[a, b] . (**)
a)Ta có:
3n = (3n + 3) + (-3) =3(n +1) + (-3)
Vì n+1 chia hết cho n+1 nên 3(n+1) chia hết cho n+1
Để 3n là bội của n+1 thì -3 chia hết cho n+1 hay n+1 thuộc Ư(-3)
Suy ra n+1 thuộc {1;3;-3;-1}
Nếu n+1=1
=> n=1-1=0
Nếu n+1 =-1
=>n=-1-1=-2
Nếu n+1=3
=>n=3-1=2
Nếu n+1=-3
=> n=-3-1=-4
Vậy x thuộc {0;2;-2;-4}
Câu b) bạn làm giống câu a nhé
đặt 2n + 34 = a^2
34 = a^2-n^2
34=(a-n)(a+n)
a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)
=> a-n 1 2
a+n 34 17
Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ
Vậy ....
Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.
=> S= (1004+14).100:2=50 900 ko là SCP