K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2017

a. A có giá trị là số nguyên <=> n+5 chia hết cho n+9

<=>(n+9)-4 chia hết cho n+9

<=> 4 chia hết cho n+9 (vì n+9 chia hết cho n+9 )

<=> n+9 là ước của 4 

=> n+9 = 1,-1 , 2 ,-2,4,-4

sau đó bn tự tìm n ha 

b, B là số nguyên <=>3n-5 chia hết cho 3n-8

<=>(3n-8)+5 chia hết cho 3n-8

<=> 5 chia hết cho 3n-8

<=> 3n-8 là ước của 5 

=> 3n-8 =1,-1,5,-5

tiếp bn lm ha

c, D là số nguyên <=> 5n+1 chia hết cho 5n+4

<=> (5n+4)-3 chia hết cho 5n+4

<=> 3 chia hết cho 5n +4

<=> 5n +4 là ước của 3 

=> 5n+4 =1, -1,3,-3

 tiếp  theo bn vẫn tự lm ha 

đoạn tiếp theo ở cả 3 câu , bn tìm n theo từng trường hợp rồi xem xem giá trị n nào thỏa mãn n là số nguyên là OK . chúc bn học giỏi

22 tháng 2 2022

\(a,3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)

3n-11-12-23-34-46-612-12
nloại01loạiloạiloạiloại-1loạiloạiloạiloại

 

c, \(\dfrac{2\left(n-3\right)+9}{n-3}=2+\dfrac{9}{n-3}\Rightarrow n-3\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)

n-31-13-39-9
n426012-6

 

27 tháng 2 2023

Có đúng không

 

4 tháng 3 2022

giúp mik nhanh vs các bn ơiiiiii

:(

4 tháng 3 2022

-bạn tự lập bảng nhé 

a, \(3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)

b, \(\dfrac{2\left(n-3\right)+11}{n-3}=2+\dfrac{11}{n-3}\Rightarrow n-3\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

n-31-111-11
n4214-8

 

c, \(\dfrac{3n}{n+2}=\dfrac{3\left(n+2\right)-6}{n+2}=3-\dfrac{6}{n+2}\Rightarrow n+2\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

a) ĐKXĐ: \(n\ne3\)

Để phân số \(A=\dfrac{n-5}{n-3}\) là số nguyên thì \(n-5⋮n-3\)

\(\Leftrightarrow n-3-2⋮n-3\)

mà \(n-3⋮n-3\)

nên \(-2⋮n-3\)

\(\Leftrightarrow n-3\inƯ\left(-2\right)\)

\(\Leftrightarrow n-3\in\left\{1;-1;2;-2\right\}\)

hay \(n\in\left\{4;2;5;1\right\}\)

Vậy: \(n\in\left\{4;2;5;1\right\}\)

11 tháng 5 2021

dạ còn B,C,D nữa ạ

14 tháng 4 2020

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

14 tháng 4 2020

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#

6 tháng 3 2018

giúp mình nha !