K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
13 tháng 7 2021

\(y^2=x\left(x+1\right)\left(x+7\right)\left(x+8\right)\)

\(=\left(x^2+8x\right)\left(x^2+8x+7\right)\)

\(\Rightarrow4y^2=\left(2x^2+16x\right)\left(2x^2+16x+14\right)\)

\(=\left(2x^2+16x+7-7\right)\left(2x^2+16x+7+7\right)\)

\(=\left(2x^2+16x+7\right)^2-49\)

\(\Leftrightarrow\left(2x^2+16x+7\right)^2-4y^2=49\)

\(\Leftrightarrow\left(2x^2+16x+7-2y\right)\left(2x^2+16x+7+2y\right)=49=1.49=7.7\)

Xét các trường hợp và thu được các nghiệm là: \(\left(-3,0\right),\left(0,0\right)\).

24 tháng 6 2018

Với x = 0 thì \(y=\pm1\)

Xét \(x\ne0\). Từ phương trình, ta có: \(4y^2=\left(2x^2+x\right)^2+3x^2+4x+4>\left(2x^2+x\right)^2\)

Hơn nữa: \(4y^2=\left(2x^2+x+2\right)^2-5x^2< \left(2x^2+x+2\right)^2\)

Suy ra: \(\left(2x^2+x\right)^2< 4y^2< \left(2x^2+x+2\right)^2\)

Do đó, ta có: \(4y^2=\left(2x^2+x+1\right)^2\) hay \(3\left(1+x+x^2+x^3+x^4\right)=\left(2x^2+x+1\right)^2\)

giải phương trình này, ta được: x = -1 haowcj x = 3

Từ đó => Nghiệm của phương trình là: (0;1);(0;-1);(-1;1);(-1;-1);(3;11);(3;-11)

24 tháng 6 2018

đã xong , xin tích trc rồi ta làm :)

\(a)\)

\(\frac{1}{x+1}-\frac{x-1}{x}=\frac{3x+1}{x\left(x+1\right)}\)

\(\Leftrightarrow x-x^2+1=3x+1\)

\(\Leftrightarrow x^2-2x=0\)

\(\Leftrightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

\(b)\)

\(\frac{\left(x+2\right)^2}{2x-3}-\frac{1}{1}=\frac{x^2+10}{2x-3}\)

\(\Leftrightarrow x^2+4x+4-2x-3=x^2+10\)

\(\Leftrightarrow x^2+2x+1=x^2+10\)

\(\Leftrightarrow2x-9=0\)

\(\Leftrightarrow2x=9\)

\(\Leftrightarrow x=\frac{2}{9}\)

AH
Akai Haruma
Giáo viên
30 tháng 4 2022

Bạn cần viết đề bằng công thức toán ( biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.

15 tháng 8 2023

x/y = 2/5 ⇒ x/2 = y/5

⇒ x/5 = 2y/10

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

x/2 = 2y/10 = (x + 2y)/(2 + 10) = 36/12 = 3

x/2 = 3 ⇒ x = 2 . 3 = 6

y/5 = 3 ⇒ y = 5 . 3 = 15

Vậy x = 6; y = 10

15 tháng 8 2023

cảm ơn bạn nhiều ạyeu

5 tháng 3 2020

\(x^2+3xy+y^2=x^2y^2^{^{\left(1\right)}}\)

\(\Leftrightarrow x^2+2xy+y^2=x^2y^2-xy\)

\(\Leftrightarrow\left(x+y\right)^2=xy\left(xy-1\right)\)

Vì xy(xy-1) là 2 số nguyên liên tiếp có tích là 1 số chính phương 

=> xy=0 hoặc xy-1 =0 

+) Nếu xy=0 thay vào (1) ta có 

\(x^2+y^2=0\Leftrightarrow x=y=0\)

+)Nếu xy-1 =0 hay xy=1 ta có 

\(x^2+y^2+3=1\Leftrightarrow x^2+y^2=-2\left(loại\right)\)

Vậy x=0 ; y=0

5 tháng 3 2020

Đoạn số chính phương rồi suy ra xy mình chưa hiểu lắm,bạn gthich tí dc 0

14 tháng 3 2020

\(x^2-y^2=5\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)=5\)

=> x-y và x+y \(\inƯ\left(5\right)=\left\{\pm1,\pm5\right\}\)

Ta có bảng sau:

x-y-5-115
x+y-1-551
x-3-333
y2-22-2

Vậy (x,y)=(-3,2),(-3,-2),(3,2),(3,-2)

18 tháng 3 2020

xin lỗi nhưng mình ghi nhầm đề:

Tìm nghiệm nguyên của PT; \(x^2-2y^2\text{=}5\)