K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 2

\(\Leftrightarrow\left(x-1\right)^2=27y^3+1\)

\(\Leftrightarrow\left(x-1\right)^2=\left(3y+1\right)\left(9y^2-3y+1\right)\)

Gọi \(d=ƯC\left(3y+1;9y^2-3y+1\right)\)

\(\Rightarrow3y\left(3y^2+1\right)-\left(9y^2-3y+1\right)⋮d\)

\(\Rightarrow6y-1⋮d\)

\(\Rightarrow2\left(3y+1\right)-\left(6y-1\right)⋮d\)

\(\Rightarrow3⋮d\)

Mà \(3y+1⋮d\Rightarrow d\ne3\) 

\(\Rightarrow d=1\)

\(\Rightarrow3y+1\) và \(9y^2-3y+1\) nguyên tố cùng nhau

\(\Rightarrow3y+1\) và \(9y^2-3y+1\) đều là SCP

\(\Rightarrow9y^2-3y+1=n^2\)

\(\Leftrightarrow36y^2-12y+4=4n^2\)

\(\Leftrightarrow\left(6y-1\right)^2+3=\left(2n\right)^2\)

\(\Leftrightarrow\left(2n+6y-1\right)\left(2n-6y+1\right)=3\)

\(\Rightarrow y=0\Rightarrow x=\left\{0;2\right\}\)

20 tháng 2

loading...    

24 tháng 11 2017

2x3-x2y+3x2+2x-y=2

(2x3+2x)-(x2y+y)+(3x2+3)=5

2x(x2+1)-y(x2+1)+3(x2+1)=5

(x2+1)(2x-y+3)=5

Mà x2>=0 => x2+1>0

=> (x2+1)(2x-y+3)=5=1.5=5.1

•x2+1=1 và 2x-y+3=5 => x=0; y=-2

•x2+1=5 và 2x-y+3=1=> x=2;y=6 hoặc x=-2; y=-2

Vậy (x;y) là (0;-2);(2;6);(-2;-2)

16 tháng 6 2017

x6 - x4 + 2x3 + 2x2 = x2(x + 1)2(x2 - 2x + 2) = y2.

do đó x2 - 2x + 2 = t2 hay (x - 1)2 + 1 = t2 hay (x - 1 - t)(x - 1 + t) = 1.

đến đấy bạn tự giải nhé.

NV
15 tháng 1

\(\Leftrightarrow x^6-2\left(x^3+3x^2+3x+1\right)-15< 0\)

\(\Leftrightarrow x^6-2\left(x+1\right)^3-15< 0\)

\(\Leftrightarrow x^6< 2\left(x+1\right)^3+15\) (1)

- Với \(x\le-2\Rightarrow x+1\le-1\Rightarrow2\left(x+1\right)^3+15\le13\)

Trong khi đó \(x^6\ge2^6=32>13\) (ktm(1))

\(\Rightarrow\) Không tồn tại \(x\le-2\) thỏa mãn BPT (2)

- Với \(x\ge3\Rightarrow x^2\ge3x=2x+x\ge2x+3>2x+2\)

\(\Rightarrow x^2>2\left(x+1\right)\Rightarrow x^6>2^3.\left(x+1\right)^3=8\left(x+1\right)^3\) (3)

(1);(3) \(\Rightarrow2\left(x+1\right)^3+15>8\left(x+1\right)^3\)

\(\Rightarrow6\left(x+1\right)^3< 15\Rightarrow\left(x+1\right)^3< \dfrac{5}{2}< 8\)

\(\Rightarrow x+1< 2\Rightarrow x< 1\) (mâu thuẫn giả thiết \(x\ge3\))

\(\Rightarrow\) Không tồn tại \(x\ge3\) thỏa mãn BPT (4)

Từ (2);(4) \(\Rightarrow\) các giá trị nguyên của x nếu có thỏa mãn BPT chúng sẽ thuộc \(-2< x< 3\)

\(\Rightarrow x=\left\{-1;0;1;2\right\}\)

Thay vào BPT ban đầu thử thấy đều thỏa mãn

Vậy \(x=\left\{-1;0;1;2\right\}\)

3 tháng 9 2020

Ta có phương trình :

\(x^2y+x^2=x^3-y+2x+7\)

\(\Leftrightarrow x^2y+y=x^3-x^2+2x+7\)

\(\Leftrightarrow y.\left(x^2+1\right)=x^3-x^2+2x+7\)

\(\Leftrightarrow y=\frac{x^3-x^2+2x+7}{x^2+1}\)

Do \(y\inℤ\rightarrow\frac{x^3-x^2+2x+7}{x^2+1}\inℤ\). Lại có \(x\inℤ\Rightarrow\hept{\begin{cases}x^3-x^2+2x+7\inℤ\\x^2+1\inℤ\end{cases}}\)

\(\Rightarrow x^3-x^2+2x+7⋮x^2+1\)

\(\Leftrightarrow x.\left(x^2+1\right)-\left(x^2+1\right)+x+8⋮x^2+1\)

\(\Leftrightarrow x+8⋮x^2+1\)

\(\Rightarrow\left(x+8\right)\left(x-8\right)⋮x^2+1\)

\(\Leftrightarrow x^2+1-65⋮x^2+1\)

\(\Leftrightarrow65⋮x^2+1\)\(\Leftrightarrow x^2+1\inƯ\left(65\right)\). Mà : \(x^2+1\ge1\forall x\)

\(\Rightarrow x^2+1\in\left\{1,5,13,65\right\}\)

\(\Leftrightarrow x^2\in\left\{0,4,12,64\right\}\)\(x^2\) là số chính phương với \(x\inℤ\)

\(\Rightarrow x^2\in\left\{0,4,64\right\}\Rightarrow x\in\left\{0,2,-2,8,-8\right\}\)

+) Với \(x=0\) thì \(y=7\) ( Thỏa mãn )

+) Với \(x=2\) thì \(y=3\) ( Thỏa mãn )

+) Với \(x=-2\) thì \(y=-\frac{9}{5}\) ( Loại )

+) Với \(x=8\) thì \(y=\frac{471}{65}\) ( Loại )

+) Với \(x=-8\) thì \(y=-9\) ( Thỏa mãn )

Vậy phương trình đã cho có nghiệm \(\left(x,y\right)\in\left\{\left(-8,-9\right);\left(0,7\right);\left(2,3\right)\right\}\)

18 tháng 8 2023

\(\Leftrightarrow x^2+2x+1=y^2+11\)

\(\Leftrightarrow\left(x+1\right)^2-y^2=11\)

\(\Leftrightarrow\left(x+1-y\right)\left(x+1+y\right)=11\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1-y=-1\\x+1+y=-11\end{matrix}\right.\\\left\{{}\begin{matrix}x+1-y=-11\\x+1+y=-1\end{matrix}\right.\\\left\{{}\begin{matrix}x+1-y=1\\x+1+y=11\end{matrix}\right.\\\left\{{}\begin{matrix}x+1-y=11\\x+1+y=1\end{matrix}\right.\end{matrix}\right.\)

Giải các hệ PT tìm x; y

17 tháng 11 2017

Tui vừa trả lời 3 bài này ở câu của Nguyễn Anh Quân

Xem tui giải đúng không nha

Xin Wrecking Ball nhận xét

17 tháng 11 2017

Đỗ Đức Đạt cop trên Yahoo

24 tháng 6 2021

Do VP là số lẻ

<=> 2x + 5y + 1 là số lẻ và \(2^{\left|x\right|}+y+x^2+x\) là số lẻ

<=> y chẵn và \(2^{\left|x\right|}+y+x\left(x+1\right)\) là số lẻ 

=> \(2^{\left|x\right|}\) là số lẻ (do y chẵn và x(x+1) chẵn)

=> x = 0

PT <=> \(\left(5y+1\right)\left(1+y\right)=105\)

<=> y = 4 (thử lại -> thỏa mãn)

KL: x = 0; y = 4

26 tháng 11 2021

sai r nha tại x là nguyên dương nên khác 0 chứ :)))