Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow x^y+y^x+x^3+y^3+1+3\left(x+y\right)\left(x+1\right)\left(y+1\right)=x^3+y^3+1+z\)
\(\Leftrightarrow x^y+y^x+3\left(x+y\right)\left(y+1\right)\left(x+1\right)=z\)
Do \(VT>3\Rightarrow z>3\Rightarrow z\) lẻ đồng thời z không chia hết cho 3
Nếu \(x;y\) đều lẻ hoặc đều chẵn \(\Rightarrow VT\) chẵn (không thỏa mãn)
\(\Rightarrow\) x và y có đúng 1 số chẵn, do vai trò của x; y như nhau, giả sử y chẵn \(\Rightarrow y=2\)
\(\Rightarrow x^2+2^x+9\left(x+2\right)\left(x+1\right)=z\)
- Nếu \(x>3\Rightarrow x^2\) chia 3 dư 1, đồng thời do x lẻ \(\Rightarrow x=2k+1\)
\(\Rightarrow2^x=2^{2k+1}=2.4^k\) chia 3 dư 2
\(\Rightarrow x^2+2^x\) chia hết cho 3 \(\Rightarrow VT\) chia hết cho 3 (không thỏa mãn)
\(\Rightarrow x\le3\Rightarrow x=3\Rightarrow z=197\) (thỏa mãn)
Vậy \(\left(x;y;z\right)=\left(3;2;197\right)\)
a)11x-7<8x+7
<-->11x-8x<7+7
<-->3x<14
<--->x<14/3 mà x nguyên dương
---->x \(\in\){0;1;2;3;4}
b)x^2+2x+8/2-x^2-x+1>x^2-x+1/3-x+1/4
<-->6x^2+12x+48-2x^2+2x-2>4x^2-4x+4-3x-3(bo mau)
<--->6x^2+12x-2x^2+2x-4x^2+4x+3x>4-3+2-48
<--->21x>-45
--->x>-45/21=-15/7 mà x nguyên âm
----->x \(\in\){-1;-2}
Dễ thấy vế trái chia hết cho 5 với y >0
Vậy y=0 , giải ra x
Học tốt!!!!!!!
Ta có : 2x;2x+1;2x+2;2x+3;2x+4 là 5 số tự nhiên liên tiếp.
=> 2x(2x+1)(2x+2)(2x+3)(2x+4)⋮5
Mặt khác ƯCLN ( 2x; 5)=1 nên (2x+1)(2x+2)(2x+3)(2x+4)⋮5
+ Với y≥1 thì VP= [(2x+1)(2x+2)(2x+3)(2x+4)−5y]⋮5
Mà VP= 11879≡4(mod5)
Suy ra phương trình vô nghiệm
+Với y=0 ta có :
(2x+1)(2x+2)(2x+3)(2x+4)−50=11879
<=> (2x+1)(2x+2)(2x+3)(2x+4)=11880
<=> (2x+1)(2x+2)(2x+3)(2x+4)=9.10.11.12
<=> 2x+1=9
<=> 2x=8
<=> 2x=23
<=>x=3
Vậy phương trình đã cho có 1 nghiệm duy nhất (x; y)=(3; 0)
Ta có: \(x\left(x+2y\right)^3-y\left(y+2x\right)^3=27\)
\(\Leftrightarrow x\left(x^3+6x^2y+12xy^2+8y^3\right)-y\left(y^3+6xy^2+12x^2y+8x^3\right)=27\)
\(\Leftrightarrow x^4+6x^3y+12x^2y^2+8xy^3-y^4-6xy^3-12x^2y^2-8x^3y=27\)
\(\Leftrightarrow\left(x^4-y^4\right)-2x^3y+2xy^3=27\)
\(\Leftrightarrow\left(x^2-y^2\right)\left(x^2+y^2\right)-2xy\left(x^2-y^2\right)=27\)
\(\Leftrightarrow\left(x^2-y^2\right)\left(x^2-2xy+y^2\right)=27\)
\(\Leftrightarrow\left(x+y\right)\left(x-y\right)^3=27\)
Vì x , y > 0 => \(x+y>0\Rightarrow\left(x-y\right)^3>0\Rightarrow x>y\)
Khi đó: \(\left(x-y\right)^3\in\left\{1;8;27\right\}\Rightarrow x-y\in\left\{1;2;3\right\}\)
Nếu \(\left(x-y\right)^3=1\Rightarrow\hept{\begin{cases}x-y=1\\x+y=27\end{cases}}\Rightarrow\hept{\begin{cases}x=14\\y=13\end{cases}}\)
Nếu \(\left(x-y\right)^3=8\Rightarrow\hept{\begin{cases}x-y=2\\x+y=\frac{27}{8}\end{cases}\left(ktm\right)}\)
Nếu \(\left(x-y\right)^3=27\Rightarrow\hept{\begin{cases}x-y=3\\x+y=1\end{cases}}\left(ktm\right)\)
Vậy x = 14 , y = 13
(x+y)2 = (x+y)(x-y)
<=>x2 + 2xy + y2 = x2 - y2
<=>2y2 + 2xy = 0
<=>2y(x+y) = 0
<=> y = 0 hoặc x + y = 0
<=>y = 0 hoặc y = -x
vc đề nhức nhách thật mới lớp 8 đã có pt 2 ẩn r =)) sao giải dc hệ phương trình còn giải dc chứ xem có sai đề k
bình thường