Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vai trò bình đẳng của \(x;y;z\) trong phương trình, ta có: \(x\le y\le z\)
Mà: \(x;y;z\) nguyên dương\(\Rightarrow xyz\ne0\)
Do: \(x\le y\le z\Leftrightarrow xyz=x+y+z\le3z\Leftrightarrow xy\le3\Leftrightarrow xy\in\left\{1;2;3\right\}\)
+) Nếu \(xy=1\Leftrightarrow x=y=1\) thay vào phương trình ta có: \(2+z=z\) (Vô lý)
+) Nếu \(xy=2\) mà \(x\le y\Leftrightarrow x=1;y=2\) thay vào phương trình ta có: \(z=3\)
+) Nếu \(xy=3\) mà \(x\le y\Leftrightarrow x=1;y=3\) thay vào phương trình ta có: \(z=2\)
Vậy nghiệm nguyên dương của phương trình là các hoán vị của \(1;2;3\)
Ta có : \(x+y+z=xyz\)(1)
Do vai trò bình đẳng của x, y, z trong phương trình, trước hết ta xét \(x\le y\le z\)
Vì x, y, z nguyên dương nên \(xyz\ne0\), do \(x\le y\le z\)
\(\Rightarrow xyz=x+y+z\le3z\)
\(\Rightarrow xy\le3\)
.\(\Rightarrow xy\in\left\{1;2;3\right\}\)
Nếu xy = 1 => x = y = 1, thay vào (1) ta có : 2 + z = z (vô lí)
Nếu xy = 2, do x \(\le\) y nên x = 1 và y = 2, thay vào (1) => z = 3.
Nếu xy = 3, do x \(\le\) y nên x = 1 và y = 3, thay vào (1) => z = 2.
Vậy nghiệm nguyên dương của phương trình (1) là các hoán vị của (1 ; 2 ; 3).
Không mất tính tổng quát, giả sử \(x\ge y\ge z\ge1\).
Khi đó ta có: \(13=xyz+x^2+y^2+z^2\ge z^3+3z^2\)
suy ra \(z=1\).
\(12=xy+x^2+y^2\ge y^2+y^2+y^2=3y^2\)
\(\Rightarrow y=1\)hoặc \(y=2\).
Với \(y=1\): \(x^2+1+1+x=13\Leftrightarrow x^2+x-11=0\)không có nghiệm nguyên dương.
Với \(y=2\): \(x^2+2^2+1^2+1.2.x=13\Leftrightarrow x^2+2x-8=0\Leftrightarrow\left(x-2\right)\left(x+4\right)=0\)
\(\Rightarrow x=2\)thỏa mãn.
Vậy phương trình có nghiệm là \(\left(1,2,2\right)\)và các hoán vị.
1 Do vai trò bình đẳng của x, y, z trong phương trình, trước hết ta xét x ≤ y ≤ z.
Vì x, y, z nguyên dương nên xyz ≠ 0, do x ≤ y ≤ z => xyz = x + y + z ≤ 3z => xy ≤ 3 => xy thuộc {1 ; 2 ; 3}.
Nếu xy = 1 => x = y = 1, thay vào (2) ta có : 2 + z = z, vô lí.
Nếu xy = 2, do x ≤ y nên x = 1 và y = 2, thay vào (2), => z = 3.
Nếu xy = 3, do x ≤ y nên x = 1 và y = 3, thay vào (2), => z = 2.
Vậy nghiệm nguyên dương của phương trình là các hoán vị của (1 ; 2 ; 3).
2
2, dùng bđt |a|+|b| >= |a+b| ,dấu "=" khi ab >= 0
A >= |2x+2+2013-2x|=2015
Dấu "=" khi (2x+2)(2013-x) >= 0 <=> -1 <= x <= 2013
\(VD1\)
Giả sử \(x\le y\Rightarrow\sqrt{x}\le\sqrt{y}\)
\(\Rightarrow2\sqrt{x}\le\sqrt{x}+\sqrt{y}=9\)
\(\Rightarrow\sqrt{x}\le4,5\)
\(\Rightarrow x\le4,5^2\)
\(\Rightarrow x\le20,25\)
\(\Rightarrow x\in\left\{0,1,4,9,16\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{0,1,2,3,4\right\}\)
TH1 : \(x=0\Rightarrow\sqrt{x}=0\Rightarrow\sqrt{y}=9\Rightarrow y=81\)
TH2 : \(x=1\Rightarrow\sqrt{x}=1\Rightarrow\sqrt{y}=8\Rightarrow y=64\)
Th3 : \(x=4\Rightarrow\sqrt{x}=2\Rightarrow\sqrt{y}=7\Rightarrow y=49\)
Th4 : \(x=9\Rightarrow\sqrt{x}=3\Rightarrow\sqrt{y}=6\Rightarrow y=36\)
Th5 : \(x=16\Rightarrow\sqrt{x}=4\Rightarrow\sqrt{y}=5\Rightarrow y=25\)
Vì x , y có vai trò như nhau nên các trường hợp còn lại chỉ là đổi chỗ giữa x và y . ( vd y = 0 thì x = 81 )
KL....
VD2: Ta có:
x+y+z=xyz ( 1 )
Chia 2 vế của ( 1 ) cho xyz\(\ne\)0 ta đc:
\(\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}=1\)
Giả sử \(x\ge y\ge z\ge1\)thì ta có:
\(1=\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}\le\frac{1}{z^2}+\frac{1}{z^2}+\frac{1}{z^2}=\frac{3}{z^2}\)
\(\Rightarrow1\le\frac{3}{z^2}\Rightarrow z^2\le3\Leftrightarrow z=1\)
Thay z=1 vào ( 1 ) ta đc:
x+y+1=xy
\(\Leftrightarrow\)xy -x - y = 1
\(\Leftrightarrow\)x ( y - 1 ) - ( y - 1 ) = 2
\(\Leftrightarrow\)( x - 1 ) ( y - 1 ) =2
Mà \(x-1\ge y-1\)nên \(\hept{\begin{cases}x-1=2\\y-1=1\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}}\)
Vậy nghiệm dương của phương trình là các hoán vị của 1, 2, 3
x=1;y=2;z=3
Cách lm thì chịu