K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
6 tháng 3 2021

Lời giải:

Hiển nhiên $x\geq 0$

Ta có: $2^x=y^2-57\equiv y^2\equiv 0,1\pmod 3$

$\Leftrightarrow (-1)^x\equiv 0,1\pmod 3$

$\Rightarrow x$ chẵn.

Đặt $x=2a$ với $a$ là số tự nhiên.

Khi đó: $2^{2a}-y^2=-57$

$\Leftrightarrow (2^a-y)(2^a+y)=-57$

Đến đây là dạng phương trình tích cực kỳ đơn giản nên bạn có thể tự xét TH để giải. Kết quả $a=3; y=11$ hay $x=6; y=7$

AH
Akai Haruma
Giáo viên
6 tháng 3 2021

Lời giải:

Hiển nhiên $x\geq 0$

Ta có: $2^x=y^2-57\equiv y^2\equiv 0,1\pmod 3$

$\Leftrightarrow (-1)^x\equiv 0,1\pmod 3$

$\Rightarrow x$ chẵn.

Đặt $x=2a$ với $a$ là số tự nhiên.

Khi đó: $2^{2a}-y^2=-57$

$\Leftrightarrow (2^a-y)(2^a+y)=-57$

Đến đây là dạng phương trình tích cực kỳ đơn giản nên bạn có thể tự xét TH để giải. Kết quả $a=3; y=11$ hay $x=6; y=7$

14 tháng 9 2017

<=>x^2+y^2-x-y-xy=0 
<=>2x^2+2y^2-2x-2y-2xy=0 
<=>(x-y)^2+(x-1)^2+(y-1)^2=2 
mà 2=0+1+1=1+0+1=1+1+0 
(phần này tách số 2 ra thành tổng 3 số chính phương) 
Xét trường hợp 1: 
(x-y)^2=0 
(x-1)^2=1 
(y-1)^2=1 
Giải ra ta được x=2, y=2 
Tương tự xét các trường hợp còn lại. 
Kết quả: 5 nghiệm: (2;2) ; (1;0) ; (1;2) ; (0;1) ; (2;1) 
Thân^^

14 tháng 9 2017

x2 - xy + y2 = x - y

<=> x2 - xy + y2 - x + y = 0

<=> x ( x - y) + y2 - ( x - y) = 0

<=> (x-1)(x-y)y2 =0

8 tháng 2 2017

Ta có  3 y − 5 + 2 x − 3 = 0 7 x − 4 + 3 x + y − 1 − 14 = 0 ⇔ 3 y − 15 + 2 x − 6 = 0 7 x − 28 + 3 x + 37 − 3 − 14 = 0 ⇔ 2 x + 3 y = 21 10 x + 3 y = 45

⇔ 3 y = 21 − 2 x 10 x + 21 − 2 x = 45 ⇔ 3 y = 21 − 2 x 8 x = 24 ⇔ x = 3 3 y = 15 ⇔ x = 3 y = 5

Vậy hệ phương trình có nghiệm duy nhất (x; y) = (3; 5)

⇒ x 2   +   y 2   =   32   +   52   =   34

Đáp án: B

27 tháng 1 2017

\(\hept{\begin{cases}x+ay=1\\\\-ax+y=a\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=1-ay\\-a\left(1-ay\right)+y=a\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=1-\frac{2a^2}{1+a^2}=\frac{1-a^2}{1+a^2}\\y=\frac{2a}{1+a^2}\end{cases}}\)

Theo đề bài ta có \(\hept{\begin{cases}x< 0\\y< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}1-a^2< 0\\2a< 0\end{cases}}\)

\(\Leftrightarrow x< -1\)

27 tháng 1 2017

a/ Ta xem đây là hệ phương trình 3 ẩn rồi giải bình thường.

\(\hept{\begin{cases}x+ay=1\\-ax+y=a\\2x-y=a+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=1-ay\\-a\left(1-ay\right)+y=a\\2\left(1-ay\right)-y=a+1\end{cases}}\)

Tới đây giải tiếp nhé. Không có bút giấy nháp nên giúp tới đây nhé. Chỉ cần thế là được nhé

18 tháng 8 2023

\(\Leftrightarrow x^2+2x+1=y^2+11\)

\(\Leftrightarrow\left(x+1\right)^2-y^2=11\)

\(\Leftrightarrow\left(x+1-y\right)\left(x+1+y\right)=11\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1-y=-1\\x+1+y=-11\end{matrix}\right.\\\left\{{}\begin{matrix}x+1-y=-11\\x+1+y=-1\end{matrix}\right.\\\left\{{}\begin{matrix}x+1-y=1\\x+1+y=11\end{matrix}\right.\\\left\{{}\begin{matrix}x+1-y=11\\x+1+y=1\end{matrix}\right.\end{matrix}\right.\)

Giải các hệ PT tìm x; y