Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n2+13-13 chia hết cho n+3
=> n2-32+32 chia het cho n+3
=> (n+3)(n-3)+9 chia het cho n+3
Vi (n+3)(n-3) chia het cho n+3 nen 9 chia het cho n+3
=> n+3 thuoc{+1;-1;+3;-3;+9;-9}
=> n thuoc {-2;-4;0;-6;6;-12}
Ta có :
13n chia hết cho n-1
Nên 13n - 13(n-1) chia hết cho n-1
Nên 13n -(13n-13) chia hết cho n-1
Nên 13n-13n+13 chia hết cho n-1
Nên 13 chia hết cho n-1
Nên n-1 thuộc Ư(13)= {1;-1;13;-13}
Ta có bảng sau :
n-1 | -1 | 1 | -13 | 13 |
n | 0 | 2 | -12 | 14 |
Mà n thuôc Z
KL : n { 0;2;-12;14 }
Ta có: n.(n + 13) - 13 chai hết n + 3
n.(n + 3) + 10n - 13 chia hết n + 3
=> 10.(n - 3) - 10 chia hết n + 3
=> 10.(n + 3 - 6) - 10 chia hết n + 3
=> 165
Ta có : n2 + 13n - 13 = n2 + (3n + n + 9n) + (3-16) = n2 + 3n + n + 3 + 9n - 16 = n(n+3) + (n+3) + 9n -16
= (n+1)(n+3)+ 9n - 16.Vì (n+1)(n+3) chia hết cho n+3 nên để n2+13n-13 chia hết cho n+3 thì 9n-16 phải chia hết cho n+3.Ta lại có : 9n-16 = 9n+27-43 = 9(n+3) - 43.Vì 9(n+3) chia hết cho n+3 nên để 9n-16 chia hết cho n+3 thì 43 phải chia hết cho n+3 => n+3 = -43;-1;1;43 => n = -46;-4;-2;40
Câu trả lời hay nhất: Đặt n² - n + 13 = k²
<--> 4n² - 4n + 52 = 4k²
<--> (4n² - 4n + 1) + 51 = 4k²
<--> (2n - 1)² + 51 = 4k²
<--> 4k² - (2n - 1)^2 = 51
<--> (2k - 2n + 1)(2k + 2n - 1) = 51
<--> (2k - 2n + 1)(2k + 2n - 1) = 51.1
Vì 2k - 2n + 1 và 2k + 2n - 1 là những số nguyên nên:
{2k - 2n + 1 = 51
{2k + 2n - 1 = 1
hoặc:
{2k - 2n + 1 = - 51
{2k + 2n - 1 = - 1
Giải các hệ PT trên ta tìm được k và n (cần tìm)
\(n^2+13n=n^2+6n+7n+9-9=\left(n^2+6n+9\right)+\left(7n-9\right)\)
\(=\left(n^2+3n+3n+9\right)+\left(7n-9\right)=\left[n\left(n+3\right)+3\left(n+3\right)\right]+\left(7n-9\right)=\left(n+3\right)^2+\left(7n-9\right)\)
Mà (n+3)2 chia hết cho n+3
=>7n-9 chia hết cho n+3
=>7(n+3)-30 chia hết cho n+3
=>-30 chia hết cho n+3 (vì 7(n+3) chia hết cho n+3))
=>n+3 \(\in\) Ư(-30)={-30;-15;-10;-6;-5;-3;-2;-1;;1;2;3;5;6;10;15;30}
=>n \(\in\) {-33;-18;-13;-9;.......27}
Vậy..............
n2+13n chia hết cho n+3
=>n2+3n+10n+30-30 chia hết cho n+3
=>n.(n+3)+10.(n+3)-30 chia hết cho n+3
=>(n+10).(n+3)-30 chia hết cho n+3
Mà (n+10).(n+3) chia hết cho n+3
=>30 chia hết cho n+3
=>n+3\(\in\){-30;-15;-10;-6;-5;-3;-2;-1;1;2;3;5;6;10;15;30}
=>n\(\in\){-33;-18;-13;-9;-8;-6;-5;-4;-2;-1;0;2;3;7;12;27}