K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2020

\(\frac{n^2+3n+1}{n+2}\inℤ\)

\(\Rightarrow n^2+3n+1⋮n+2\)

\(\Rightarrow n^2+4n+4-n-3⋮n+2\)

\(\Rightarrow\left(n+2\right)^2-\left(n+3\right)⋮n+2\)

\(\Rightarrow n+3⋮n+2\)

\(\Rightarrow n+2+1⋮n+2\)

\(\Rightarrow1⋮n+2\)

\(\Rightarrow n+2\inƯ\left(1\right)\)

\(\Rightarrow n+2\in\left\{-1;1\right\}\)

\(\Rightarrow n\in\left\{-3;-1\right\}\) mà n thuộc N

\(\Rightarrow n\in\varnothing\)

12 tháng 3 2016

2. Ta có:

+) Nếu p = 2 => 2 + 10 = 12 (không là số nguyên tố), 2 + 14 = 16 (không là số nguyên tố) => loại p = 2

+) Nếu p = 3 => 3 + 10 = 13 (là số nguyên tố), 3 + 14 = 17 (là số nguyên tố) => chọn p = 3

+) Nếu p > 3 => p = 3k + 1. p = 3k + 2 (k \(\in\) N*)

=> p = 3k + 1 => p + 10 = 3k + 12 chia hết cho 3 => loại p = 3k + 1

=> p = 3k + 2 => p + 14 = 3k + 15 chia hết cho 3 => loại p = 3k + 2.

Vậy p = 3.

12 tháng 3 2016

UCLN là gì

15 tháng 3 2020

đặt \(p^{2m}+q^{2m}=a^2\)

Xét p,q cùng lẻ thì \(p^{2m}\)chia 4 dư 1 ; \(q^{2m}\)chia 4 dư 1

\(\Rightarrow p^{2m}+q^{2m}\)chia 4 dư 2

\(\Rightarrow a^2\)chia 4 dư 2 ( vô lí vì SCP chia 4 ko thể dư 2 hoặc 3 )

\(\Rightarrow\)ít nhất 1 trong 2 số p,q có 1 số bằng 2

giả sử p = 2

\(\Rightarrow4^m=a^2-q^{2n}=\left(a-q^n\right)\left(a+q^n\right)\)

\(\Rightarrow\hept{\begin{cases}a-q^n=4^x\\a+q^n=4^y\end{cases}\Rightarrow2.q^n=4^y-4^x⋮4}\)

\(\Rightarrow q^n⋮2\)

\(\Rightarrow q⋮2\)

\(\Rightarrow q=2\)

Thay p = q = 2 vào, ta được :

\(4^m+4^n=a^2\)

giả sử \(m\ge n\)

Đặt \(m=n+z\)

Ta có : \(4^{n+z}+4^n=4^n\left(4^z+1\right)=a^2\)

vì \(4^n\)là số chính phương nên \(4^z+1\)là số chính phương

Dễ thấy \(4^z+1=\left(2^z\right)^2+1\)không là số chính phương nên suy ra phương trình vô nghiệm

24 tháng 3 2020

Đáp số nè: m=2, n=1, p=2, q=3 và các hoán vị.

Nếu ai cần thì cứ nhắn tin vs mik nha.

1 tháng 10 2018

các bn giải đầy đủ ra nha mk đang cần gấp

23 tháng 7 2018

a) Gọi 4 số tự nhiên liên tiếp đó là: n ; n+1; n+2; n+3 (n thuộc N)

Ta có: \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1=n\left(n+3\right)\left(n+1\right)\left(n+2\right)+1\)

    \(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\left(\cdot\right)\)

Đặt n2 + 3n = t (t thuộc N) thì \(\left(\cdot\right)=t\left(t+2\right)+1=t^2+2t+1=\left(t+1\right)^2=\left(n^2+3n+1\right)^2\)

Vì n thuộc N nên (n2+3n+1) thuộc N

=> Vậy n(n+1)(n+2)(n+3)+1 là 1 số chính phương

24 tháng 7 2018

tính giá trị của biểu thức 

a, 2x^2(ax^2+2bx+4c)=6x^4-20x^3-8x^2 với mọi x

b, (ax+b)(x^2-cx+2)=x^3+x^2-2 với mọi x

9 tháng 8 2019

Em tham khảo!

Câu 3: Câu hỏi của trần như - Toán lớp 8 - Học toán với OnlineMath

Câu 2: Câu hỏi của Hoàng Bình Minh - Toán lớp 8 - Học toán với OnlineMath