K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2017

Ta có: \(\sqrt[k+1]{\frac{k+1}{k}}>1\) với \(k=1,2,...,n\)

Áp dụng BĐT AM-GM cho \(k+1\) số ta có: 

\(\sqrt[k+1]{\frac{k+1}{k}}=\sqrt[k+1]{\frac{1.1...1}{k}\cdot\frac{k+1}{k}}\)

\(< \frac{1+1+1+...+1+\frac{k+1}{k}}{k+1}=\frac{k}{k+1}+\frac{1}{k}=1+\frac{1}{k\left(k+1\right)}\)

Suy ra \(1< \sqrt[k+1]{\frac{k+1}{k}}< 1+\left(\frac{1}{k}-\frac{1}{k+1}\right)\)

Lần lượt cho \(k=1,2,3,...,n\) rồi cộng lại ta được:

\(n< \sqrt{2}+\sqrt[3]{\frac{3}{2}}+...+\sqrt[n+1]{\frac{n+1}{n}}< n+1-\frac{1}{n}< n+1\)

Vậy \(\left[a\right]=n\)

27 tháng 11 2015

Xét số hạng tổng quát \(\frac{n+1}{n}=1+\frac{1}{n}vif0<\frac{1}{n}<1nen1<1+\frac{1}{n}<2\Rightarrow\sqrt[n+1]{1}<\sqrt[n+1]{\frac{n+1}{n}}<\sqrt[n+1]{2}<\sqrt{2}\)

\(\Rightarrow1<\sqrt[n+1]{\frac{n+1}{n}}<\sqrt{2}\approx1,41\) => phần nguên các số có dạng \(\sqrt[n+1]{\frac{n+1}{n}}=1\)

=> vậy a có n số hạng => 1+1+1+...+1=n

25 tháng 12 2018

Sau khi ib với Hoàng Nguyễn  thì đề bài như sau

Tìm \(n\inℕ\)biết

\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+..+\frac{1}{\sqrt{n-1}+\sqrt{n}}=11\)

ĐKXĐ: n > 1

Ta đi c/m bài toán tổng quát

\(\frac{1}{\sqrt{a-1}+\sqrt{a}}=\frac{\sqrt{a}-\sqrt{a-1}}{\left(\sqrt{a}-\sqrt{a-1}\right)\left(\sqrt{a}+\sqrt{a-1}\right)}\)

                                  \(=\frac{\sqrt{a}-\sqrt{a-1}}{a-a+1}\)

                                   \(=\sqrt{a}-\sqrt{a-1}\)

Áp  dụng vào bài toán đc

\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{n-1}+\sqrt{n}}=11\)

\(\Leftrightarrow\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{n}-\sqrt{n-1}=11\)

\(\Leftrightarrow\sqrt{n-1}-1=11\)

\(\Leftrightarrow\sqrt{n-1}=12\)

\(\Leftrightarrow n-1=144\)

\(\Leftrightarrow n=145\left(TmĐKXĐ\right)\)

Vậy  n = 145

20 tháng 9 2015

Xét số hạng tổng quát \(\frac{n+1}{n}=1+\frac{1}{n}\) . Vì \(0

23 tháng 7 2016

không biết làm

21 tháng 12 2015

Đặt A =\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+.....+\frac{1}{\sqrt{n}}\)

=> A > \(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}+.....+\frac{1}{\sqrt{n}}\)

=> A > \(\frac{1}{\sqrt{n}}.n\)

=> A > \(\sqrt{n}\)

=> \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+.....+\frac{1}{\sqrt{n}}>\sqrt{n}\)(Đpcm)