K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2020

Theo đề ta có : I\(\in\)d \(\Rightarrow\)2=a+b (1)

Lại có d tạo với hai tia Ox, Oy một tam giác diện tích bằng 4

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\text{y}\text{=}b\\x=\frac{-b}{a}\end{matrix}\right.\)

\(\Rightarrow\)S=\(\frac{1}{2}\frac{-b}{a}b=4\Leftrightarrow\frac{-b^2}{8}=a\:\left(2\right)\)

Thay (2) vào (1) ta co: \(b-\frac{b^2}{8}=2\:\Leftrightarrow8b-b^2-16=0\)

\(\Leftrightarrow b=4\:\Rightarrow\:a=-2\)

\(\Rightarrow\)d: y=-2x+4

Suy ra: A=(-2)2+42=20

7 tháng 8 2019

Đáp án B

NV
11 tháng 11 2021

Đề thiếu dữ liệu quan trọng nhất là diện tích tam giác bằng bao nhiêu

24 tháng 6 2019

Do đường thẳng d đi qua điểm I (1; 3) nên a + b = 3 ⇒ a = 3 − b

Giao điểm của d và các tia Ox, Oy lần lượt là M ∈ − b a ; 0   N 0 ; b

(Với b > 0, a < 0 suy ra b > 3)

Do đó: S Δ O M N = 1 2 . O M . O N = 1 2 . b a . b = b 2 2 a . Mà S Δ O M N = 6 ⇔ b 2 = 12 a

⇔ b 2 = 12 3 − b ⇔ b 2 = 36 − 12 b b 2 = − 36 + 12 b ⇔ b = 6    ( T M ) b = − 6 + 72    ( L ) b = − 6 − 72    ( L )

Với b = 6 ⇒ a = − 3 ⇒ d :   y = − 3 x + 6

Đáp án cần chọn là: A

5 tháng 1 2019

Đáp án B

12 tháng 1 2019

Đáp án D

NV
24 tháng 2 2021

Gọi pt đường thẳng có dạng: \(y=ax+b\)

Đường thẳng qua M nên: \(6=-a+b\Rightarrow b=a+6\)

\(\Rightarrow y=ax+a+6\)

Đường thẳng cắt 2 tia Ox, Oy khi \(a\ne\left\{-6;0\right\}\)

Gọi A là giao điểm với Ox \(\Rightarrow A\left(-\dfrac{a+6}{a};0\right)\) \(\Rightarrow OA=\left|x_A\right|=\left|\dfrac{a+6}{a}\right|\)

Gọi B là giao điểm với Oy \(\Rightarrow B\left(0;a+6\right)\Rightarrow OB=\left|y_B\right|=\left|a+6\right|\)

\(S_{OAB}=\dfrac{1}{2}OA.OB=\dfrac{1}{2}\left|\dfrac{a+6}{a}\right|.\left|a+6\right|=4\)

\(\Leftrightarrow\left|\dfrac{a^2+12a+36}{a}\right|=8\Rightarrow a^2+20a+36=0\)

\(\Rightarrow\left[{}\begin{matrix}a=-2\\a=-18\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=-2x+4\\y=-18x-12\end{matrix}\right.\)