K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đề bài là gì sao không ghi rõ?? 

26 tháng 7 2018

a,  x2+2xy+y2+2x+2y-15

<=> (x+y )2+2(x+y)+1-16

Đặt x+y =a

<=> a2+2a+1-42

<=> (a+1)2-42

<=> (a+5)(a-3) =>( x+y+5)(x+y-3)

b, x2-4xy+4y2-2x-4y-35

<=> (x-2y)2-2(x-2y)+1-36

Đặt (x-2y)  =b 

=> b2-2b+1-62

<=> (b-1)2-62

<=> (b-7)(b+5)=> (x-2y-7)(x-2y+5)

c, 

26 tháng 7 2018

a,A= x^2+2xy+y^2+2x+2y-15

= (x+y)^2+(x+y)-15

Đặt x+y=a, ta có:

A=a^2+2a-15

  =a^2+2a+1-16

  =(a+1)^2-4^2

  =(a+1+4)(a+1-4)

  =(a+5)(a-3)

Thay a=x+y, ta có: A=(x+y+5)(x+y-3).

15 tháng 11 2016

\(B=3x^2-5x+7=3\left(x-\frac{5}{6}\right)^2+\frac{59}{12}\ge\frac{59}{12}\)

\(C=x^2-4x+3+11=\left(x^2-4x+4\right)+10=\left(x-2\right)^2+10\ge10\)

\(D=-x^2-4x-y^2+2y=-\left(x^2-4x+4\right)-\left(y^2-2y+1\right)+5=-\left[\left(x-2\right)^2+\left(y-1\right)^2\right]+5\le5\)

26 tháng 12 2016

a=(2x+y)^2+(x-1)^2+(y+2)^2+2021-5=2016

Amin=2016

30 tháng 9 2020

Ta có: \(5x^2-4xy+2x-2y+y^2+2=0\)

\(\Leftrightarrow\left(4x^2-4xy+y^2\right)+\left(4x-2y\right)+1+\left(x^2-2x+1\right)==0\)

\(\Leftrightarrow\left[\left(2x-y\right)^2+2\left(2x-y\right)+1\right]+\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(2x-y+1\right)^2+\left(x-1\right)^2=0\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(2x-y+1\right)^2=0\\\left(x-1\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}\)

30 tháng 9 2020

y sai rùi bn

7 tháng 9 2021

\(x^2+4y^2-5x+10y-4xy+20\)

\(=x^2-4xy+4y^2-2.\frac{5}{2}\left(x-2y\right)+\frac{25}{4}-\frac{25}{4}+20\)

\(=\left(x-2y\right)^2-2.\frac{5}{2}\left(x-2y\right)+\frac{25}{4}+\frac{55}{4}\)

\(=\left(x-2y-\frac{5}{2}\right)^2+\frac{55}{4}\)Thay x - 2y = 5 ta được : 

\(=\left(5-\frac{5}{2}\right)^2+\frac{55}{4}=20\)

7 tháng 9 2021

\(B=x^2-2xy-2x+2y+y^2\)

\(=x^2-2xy+y^2-2\left(x-y\right)\)

\(=\left(x-y\right)^2-2\left(x-1\right)\)Thay x = y + 1 => x - y = 1 ta được : 

\(=1-2=-1\)

1 tháng 7 2016

a) \(\Leftrightarrow x^2-2xy+y^2+y^2-4y+4+1\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-2\right)^2+1\ge1\)

 vậy Min=1 khi x-y =0 , y-2 = 0 <=> x=y,y=2=>x=y=2

|Mấy câu sau tương tự nếu ko biết thì nói nha

,

a: =5x^2(y+1)-4z(y+1)

=(y+1)(5x^2-4z)

b: =2x(2y-1)-z(2y-1)

=(2y-1)(2x-z)

27 tháng 7 2023

a) \(5x^2y-4zy+5x^2-4z\)

\(=\left(5x^2y+5x^2\right)-\left(4zy+4z\right)\)

\(=5x\left(y+1\right)-4z\left(y+1\right)\)

\(=\left(y+1\right)\left(5x-4z\right)\)

b) \(4xy-2x-2yz+z\)

\(=\left(4xy-2x\right)-\left(2yz-z\right)\)

\(=2x\left(2y-1\right)-z\left(2y-1\right)\)

\(=\left(2y-1\right)\left(2x-z\right)\)