K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2021

bài bày có thể bấm máy tính nhá 

A. bấm sin-1( 0.245) sau đó bấm S\(\Leftrightarrow\)

B. bấm tan-1(4.127) sau đó bấm S\(\Leftrightarrow\)

kết quả sẽ ra độ hơi lẻ thì làm tròn lại nhé.

12 tháng 12 2023

a: BM là phân giác của góc ABC

=>\(\widehat{ABM}=\widehat{MBC}=\dfrac{\widehat{ABC}}{2}\)

CM là phân giác của góc ACB

=>\(\widehat{ACM}=\widehat{MCB}=\dfrac{\widehat{ACB}}{2}\)

Xét ΔMBC có \(\widehat{MBC}+\widehat{MCB}+\widehat{BMC}=180^0\)

=>\(\widehat{BMC}+\dfrac{\widehat{ABC}+\widehat{ACB}}{2}=180^0\)

=>\(\widehat{BMC}+\dfrac{180^0-\widehat{BAC}}{2}=180^0\)

=>\(\widehat{BMC}+\dfrac{180^0-a}{2}=180^0\)

=>\(\widehat{BMC}=180^0-90^0+\dfrac{a}{2}=\dfrac{a}{2}+90^0\)

Vì BM,BN lần lượt là phân giác trong và phân giác ngoài tại đỉnh B của ΔABC nên BM\(\perp\)BN

=>\(\widehat{MBN}=90^0\)

Vì CM,CN lần lượt là phân giác trong và phân giác ngoài tại đỉnh C của ΔABC nên CM\(\perp\)CN

=>\(\widehat{MCN}=90^0\)

Xét tứ giác BMCN có \(\widehat{BMC}+\widehat{BNC}+\widehat{MBN}+\widehat{MCN}=360^0\)

=>\(\widehat{BNC}+90^0+\dfrac{a}{2}+90^0+90^0=360^0\)

=>\(\widehat{BNC}=90^0-\dfrac{a}{2}\)

b: Xét tứ giác BMCN có \(\widehat{MBN}+\widehat{MCN}=90^0+90^0=180^0\)

nên BMCN là tứ giác nội tiếp đường tròn đường kính MN

=>B,M,C,N cùng thuộc đường tròn tâm O đường kính MN

Tâm O là trung điểm của MN

 

\(A=\dfrac{\left(sina+cosa\right)\left(sin^2a-sina\cdot cosa+cos^2a\right)}{cosa\cdot sina\left(2cosa+sina\right)}\)

\(=\dfrac{\left(sina+cosa\right)\left(1-sina\cdot cosa\right)}{cosa\cdot sina\left(2\cdot cosa+sina\right)}\)

\(1+tan^2a=\dfrac{1}{cos^2a}=1+\dfrac{9}{25}=\dfrac{34}{25}\)

\(\Leftrightarrow cosa=\dfrac{5}{\sqrt{34}}\)

=>\(sina=\dfrac{3}{\sqrt{34}}\)

\(=\dfrac{\left(sina+cosa\right)\left(1-sina\cdot cosa\right)}{cosa\cdot sina\left(2\cdot cosa+sina\right)}\)

\(=\dfrac{\left[\left(\dfrac{3}{\sqrt{34}}+\dfrac{5}{\sqrt{34}}\right)\left(1-\dfrac{15}{34}\right)\right]}{\dfrac{15}{34}\cdot\left(\dfrac{10}{\sqrt{34}}+\dfrac{3}{\sqrt{34}}\right)}\)

\(=\dfrac{\dfrac{8}{\sqrt{34}}\cdot\dfrac{19}{34}}{\dfrac{15}{34}\cdot\dfrac{13}{\sqrt{34}}}=\dfrac{8\cdot19}{15\cdot13}=\dfrac{152}{195}\)

NM
18 tháng 1 2021

O A B M I

Gọi I là trung điêm OM

do đó ta có tính chất của trung tuyến ứng với cạnh huyền lầ

 \(IO=IA=IM=\frac{1}{2}OM=\frac{1}{2}.2R=R\)

Xét tam giác IOA có \(IO=OA=AI=R\Rightarrow\)tam giác IOA đều nên IOA = 60 độ

chứng minh tương tự ta sẽ có góc IOB=60 độ 

nên AOB=AOI+IOB=120 độ

16 tháng 2 2021

AOB=120

6 tháng 10 2023

Bài 1:

a) Ta có:

\(tanB=\dfrac{AC}{AB}\Rightarrow\dfrac{AC}{AB}=\dfrac{5}{2}\)

\(\Rightarrow AC=\dfrac{AB\cdot5}{2}=\dfrac{6\cdot5}{2}=15\)  

b) Áp dụng Py-ta-go ta có: 

\(BC^2=AB^2+AC^2=6^2+15^2=261\)

\(\Rightarrow BC=\sqrt{261}=3\sqrt{29}\)

6 tháng 10 2023

Bài 2: 

\(\left\{{}\begin{matrix}sinM=sin40^o\approx0,64\Rightarrow cosN\approx0,64\\cosM=cos40^o\approx0,77\Rightarrow sinN\approx0,77\\tanM=tan40^o\approx0,84\Rightarrow cotN\approx0,84\\cotM=cot40^o\approx1,19\Rightarrow tanN\approx1,19\end{matrix}\right.\)

8 tháng 8 2016

Đặt \(tan\alpha=x\Rightarrow cot\alpha=\frac{1}{x}\) 

Ta có : \(tan\alpha+cot\alpha=2\) 

\(\Leftrightarrow x+\frac{1}{x}=2\)

\(\Leftrightarrow x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x=1\)

Vậy \(tan\alpha=1\Rightarrow\alpha=45^o\)(thỏa mãn)