K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
10 tháng 12 2023

Lời giải:

$A=2+2^2+2^3+2^4+...+2^{100}+2^{101}$

$=2+2^2+(2^3+2^4+2^5)+....+(2^{99}+2^{100}+2^{101})$

$=6+2^3(1+2+2^2)+....+2^{99}(1+2+2^2)$

$=6+(1+2+2^2)(2^3+....+2^{99})$

$=6+7(2^3+....+2^{99})$

$\Rightarrow A$ chia $7$ dư $6$.

22 tháng 12 2021

tôi làm luôn nhé ko ghi đề bài

A=2+(2^2+2^3+2^4)+....+(2^99+2^100+2^101)

A=2+2^2.(1+2+2^2)+...+2^99.(1+2+2^2)

A=2+2^2.7+...+2^99.7

A=2+(2^2+...+2^99).7 ko chia hết cho 7 

Vậy A :7 thì dư 2

23 tháng 12 2021

khó và khó

1 tháng 1 2018

số dư là 6 nha bạn 

nếu mk đúng thì bạn cho mk nhé thanks bạn nhìu các bạn ủng hộ mk nhé kb vs mk đuy

happy new year

1 tháng 1 2018

Trình bày giùm mink đi bn mik đag rít gấp

1 tháng 1 2019

a,Ta thấy A là tổng của các số hạng có cơ số giống nhau và có số mũ là các STN liên tiép từ 1 đến 100

số số hạng của tổng A là 100 số hạng

Cứ 2 số hạng ta nhóm thành 1 nhóm ta có

100÷

1 tháng 1 2019

mk làm tiếp mk ấn nhầm

100:2=50 nhóm

A=(2+2^2)+(2^3+2^4)+...+(2^99+2^100)

A=2(1+2)+2^3(1+2)+...+2^99(1+2)

A=2×3+2^3×3+...+2^99×3

A=(2+2^3+...+2^99)×3

Mà 3 chia hết cho 3

Suy ra (2+2^3+...+2^99)×3 chia hết cho 3

=》A chia hết cho 3

Vậy A chia hết cho 3

c,A=2+2^2+...+2^99+2^100

2A=2(2+2^2+...+2^99+2^100)

2A=2^2+2^3+.,.+2^100+2^101

2A-A=(2^2+2^3+...+2^100+2^101)-(2+2^2+...+2^100)

A=2^2+...+2^101-2-2^2-...-2^100

A=2^101-2

=》2^101-2<2^101

=》A<2^101

Vậy A<2^101

4 tháng 3 2016

Ta có D = 3+ 32+ 33+ ...+ 3101

               = 3+ 32+ 32* 3+ 34+ 34* 3+ ... + 3100+ 3100* 3

             = 3+ 32(1+3)+34(1+3)+ ... + 3100(1+3)

             = 3+ 32* 4+ 34* 4+ ... + 3100 * 4

             = 3+ 4( 32+ 34+ ... + 3100)

mà 4( 32+34+...+3100) chia hết cho 4 => D chia cho 4 dư 3