Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=2+2^2+...+2^{2024}\)
\(2A=2^2+2^3+...+2^{2025}\)
\(2A-A=2^2+2^3+...+2^{2025}-2-2^2-...-2^{2024}\)
\(A=2^{2025}-2\)
b) \(2A+4=2n\)
\(\Rightarrow2\cdot\left(2^{2025}-2\right)+4=2n\)
\(\Rightarrow2^{2026}-4+4=2n\)
\(\Rightarrow2n=2^{2026}\)
\(\Rightarrow n=2^{2026}:2\)
\(\Rightarrow n=2^{2025}\)
c) \(A=2+2^2+2^3+...+2^{2024}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2023}+2^{2024}\right)\)
\(A=2\cdot3+2^3\cdot3+...+2^{2023}\cdot3\)
\(A=3\cdot\left(2+2^3+...+2^{2023}\right)\)
d) \(A=2+2^2+2^3+...+2^{2024}\)
\(A=2+\left(2^2+2^3+2^4\right)+\left(2^5+2^6+2^7\right)+...+\left(2^{2022}+2^{2023}+2^{2024}\right)\)
\(A=2+2^2\cdot7+2^5\cdot7+...+2^{2022}\cdot7\)
\(A=2+7\cdot\left(2^2+2^5+...+2^{2022}\right)\)
Mà: \(7\cdot\left(2^2+2^5+...+2^{2022}\right)\) ⋮ 7
⇒ A : 7 dư 2
S = 3 + 3² + 3³ + ... + 3⁹⁹ + 3¹⁰⁰
= 3 + (3² + 3³ + 3⁴) + (3⁵ + 3⁶ + 3⁷) + ... + (3⁹⁸ + 3⁹⁹ + 3¹⁰⁰)
= 3 + 3².(1 + 3 + 3²) + 3⁵.(1 + 3 + 3²) + ... + 3⁹⁸.(1 + 3 + 3²)
= 3 + 3².13 + 3⁵.13 + ... + 3⁹⁸.13
= 3 + 13.(3² + 3⁵ + ... + 3⁹⁸)
Do 13.(3² + 3⁵ + ... + 3⁹⁸) ⋮ 13
⇒ 3 + 13.(3² + 3⁵ + ... + 98) chia 13 dư 3
Vậy S chia 13 dư 3
\(S=1+3^2+3^4+...+3^{2022}\)
\(3^2S=9S=3^2+3^4+3^6+...+3^{2024}\)
\(S=\dfrac{9S-S}{8}=\left(3^{2024}-1\right):8\)
d, không đáp án nào đúng
Lời giải:
$S=1+3^2+3^4+....+3^{2022}$
$9S=3^2S=3^2+3^4+3^6+...+3^{2024}$
$\Rightarrow 9S-S=3^{2024}-1$
$\Rightarrow S=\frac{3^{2024}-1}{8}$
Đáp án D.
1
Gọi d = ƯCLN(2n + 5; 3n + 7) (với d ∈N*)
\(\Rightarrow\hept{\begin{cases}2n+5⋮d\\3n+7⋮d\end{cases}}\) \(\Rightarrow\hept{\begin{cases}3\left(2n+5\right)⋮d\\2\left(3n+7\right)⋮d\end{cases}}\) \(\Rightarrow\hept{\begin{cases}6n+15⋮d\\6n+14⋮d\end{cases}}\)
\(\text{⇒ (6n + 15) – (6n + 14) ⋮ d}\)
\(\text{⇒1 ⋮d}\)
\(\text{⇒d = 1}\)
Do đó: \(\text{ƯCLN(2n + 5; 3n + 7) = 1}\)
Vậy hai số \(\text{2n + 5 và 3n +7 }\)là hai số nguyên tố cùng nhau.
\(M=1+3+3^2+...+3^{100}\)
\(\Leftrightarrow M=1+3+\left(3^2+3^3+3^4\right)+\left(3^5+3^6+3^7\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)
\(\Leftrightarrow M=4+3^2+\left(1+3+3^2\right)+3^5+\left(1+3+3^2\right)+...+3^{98}\left(1+3+3^2\right)\)
\(\Leftrightarrow M=4+3^2.13+3^5.13+...+3^{98}.13\)
\(\Leftrightarrow M=4+13\left(3^2+3^5+...+3^{98}\right)\)
mà \(13\left(3^2+3^5+...+3^{98}\right)⋮13\)
\(4:13\left(dư4\right)\)
\(\Leftrightarrow M:13\left(dư4\right)\)
`A = 3 + 3^2 + ... + 3^2024`
(Có 2024 số hạng, nhóm 3 số hạng lại thì còn dư 2 số hạng không có nhóm)
`A = 3 + 3^2 + (3^3 + 3^4 + 3^5) +...+ (3^2022 + 3^2023 + 3^2024) `
`A = 12 + 3^2 (3+3^2 + 3^3) + ... + 3^2021 (3 + 3^2 + 3^3) `
`A = 12 + 3^2 . 39 + ... + 3^2021 . 39`
`A = 12 + 39 . (3^2 + ... + 3^2021) `
Do `39 vdots 13 => 39 . (3^2 + ... + 3^2021) vdots 13`
`=> 12 + 39 . (3^2 + ... + 3^2021)` chia `13` dư `12`
Vậy số dư là `12`
A = 3 + 32+ 33 +...+ 32024
Xét dãy số: 1; 2; 3;...; 2024
Dãy số trên có 2024 số hạng vì 2024 : 3 = 674 dư 2 nên nhóm hai hạng tử liên tiếp của A vào nhau ta được:
A = 3 + 32 + (33 + 34 + 35) +(36 + 37 + 38) + ... + (32022 + 32023 + 32024)
A = 3 + 32 + 33.(1 + 3 + 32) + 36(1 + 3 + 32) + ... +32022.(1 + 3 + 32)
A = 3 + 9 + 33.13 + 36.13+..+ 32022.13
A = 12+ 13.(33 + 36 + ...+ 32022)
Vậy A : 13 dư 12