Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
33 = 27 = 1 (mod 13)
=> (33)667 = 1667 (mod 13)
=> 32001 = 1 (mod 13)
=> 32001.32 = 1.32 (mod 13)
=> 32003 = 9 (mod 13)
bài làm
33 = 27 = 1 (mod 13)
=> (33)667 = 1667 (mod 13)
=> 32001 = 1 (mod 13)
=> 32001.32 = 1.32 (mod 13)
=> 32003 = 9 (mod 13)
vậy ....................
hok tốt
b3 là số 100 là số hạng thứ 32,còn lại tự giải ,lươì làm thế
mấy ti.ck thế,nếu làm nhiều mà được mỗi cái thì hơi phí công,ko biết
Lời giải:
Theo định lý Fermat thì:
$2002^{18}\equiv 1\pmod {19}$
$\Rightarrow (2002^{18})^{111}.2002^5\equiv 2002^5\pmod {19}$
$2002\equiv 7\pmod {19}$
$\Rightarrow 2002^5\equiv 7^5\equiv 11\pmod {19}$
Vậy $2002^{2003}$ chia $19$ dư $11$
a)Ta thấy: 3 đồng dư với 0(mod 3)
=>32003 đồng dư với 02003(mod 3)
=>32003 đồng dư với 0(mod 3)
=>32003 chia 3 dư 0
b)Ta thấy: 52=25 đồng dư với 1(mod 12)
=>(52)35 đồng dư với 135(mod 12)
=>570 đồng dư với 1(mod 12)
Lại có: 72=49 đồng dư với 1(mod 12)
=>(72)25 đồng dư với 125(mod 12)
=>750 đồng dư với 1(mod 12)
=>570+750 đồng dư với 1+1(mod 12)
=>570+750 đồng dư với 2(mod 12)
=>570+750 chia 12 dư 2