K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ta có n3\(\equiv\)0(mod n)

=> n3-1\(\equiv\)-1(mod n)

=>( n3-1)111\(\equiv\)-1(mod n)

Ta lại có 

n2\(\equiv\)0(mod n)

=> n2-1\(\equiv\)-1(mod n)

=>( n2-1)333\(\equiv\)-1(mod n)

vậy số dư khi chia (n3-1)111.( n2-1)333 cho n là 1

12 tháng 1 2020

\(\hept{\begin{cases}n^3-1\equiv-1\left(mod\text{ }n\right)\\n^2-1\equiv-1\left(mod\text{ }n\right)\end{cases}}\Rightarrow\left(n^3-1\right)^{111}.\left(n^2-1\right)^{333}\equiv\left(-1\right)^{111}.\left(-1\right)^{333}\equiv\left(-1\right).\left(-1\right)\equiv1\)\(\left(mod\text{ }n\right)\)

26 tháng 2 2020

ahihi

11:

n^3-n^2+2n+7 chia hết cho n^2+1

=>n^3+n-n^2-1+n+8 chia hết cho n^2+1

=>n+8 chia hết cho n^2+1

=>(n+8)(n-8) chia hết cho n^2+1

=>n^2-64 chia hết cho n^2+1

=>n^2+1-65 chia hết cho n^2+1

=>n^2+1 thuộc Ư(65)

=>n^2+1 thuộc {1;5;13;65}

=>n^2 thuộc {0;4;12;64}

mà n là số tự nhiên

nên n thuộc {0;2;8}

Thử lại, ta sẽ thấy n=8 không thỏa mãn

=>\(n\in\left\{0;2\right\}\)

4 tháng 9 2023

cảm on ha

Bài 2: 

\(n^3-n^2+2n+7⋮n^2+1\)

\(\Leftrightarrow n^3+n-n^2-1+n+8⋮n^2+1\)

\(\Leftrightarrow n^2-64⋮n^2+1\)

\(\Leftrightarrow n^2+1\in\left\{1;65\right\}\)

\(\Leftrightarrow n\in\left\{0;8;-8\right\}\)

7 tháng 11 2021

giúp mình với bucminh

 

 

\(\Leftrightarrow n^3+n-n^2-1+n+8⋮n^2+1\)

\(\Leftrightarrow n^2+1\in\left\{1;65\right\}\)

hay \(n\in\left\{0;8;-8\right\}\)

n^3-n^2+2n+7 chia hết cho n^2+1

=>n^3+n-n^2-1+n+6 chia hết cho n^2+1

=>n+6 chia hết cho n^2+1

=>n^2-36 chia hết cho n^2+1

=>n^2+1-37 chia hết cho n^2+1

=>n^2+1 thuộc {1;37}

=>\(n^2\in\left\{0;36\right\}\)

=>n thuộc {0;6;-6}

Ta thử lại, ta thấy n=-6 và n=6 không thỏa mãn 

=>n=0

kiến thức

hay dấu hiệu chia hết cho 7

là xong thui bạn