Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$f(x)=(x^{2009}+x^{2007}+x^{2005}+...+x^3)+(x^{2008}+x^{2006}+....+x^2)+(x+1)$
$=[x^{2007}(x^2+1)+x^{2003}(x^2+1)+...+x^3(x^2+1)]+[x^{2006}(x^2+1)+x^{2002}(x^2+1)+...+x^2(x^2+1)]+(x+1)$
$=(x^2+1)(x^{2007}+x^{2003}+...+x^3)]+(x^2+1)(x^{2006}+...+x^2)+(x+1)$
$=(x^2+1)(x^{2007}+x^{2003}+...+x^3+x^{2006}+...+x^2)+(x+1)$
$\Rightarrow f(x)$ chia $x^2+1$ dư $(x+1)$
Lời giải:
$f(x)=x^{2009}+x^{2008}+1$
$=(x^{2009}-x^2)+(x^{2008}-x)+(x^2+x+1)$
$=x^2(x^{2007}-1)+x(x^{2007}-1)+(x^2+x+1)$
$=x^2[(x^3)^{669}-1]+x[(x^3)^{669}-1]+(x^2+x+1)$
$=x^2(x^3-1)[(x^3)^{668}+....+1]+x(x^3-1)[(x^3)^{668}+...+1]+(x^2+x+1)$
$=x^2(x-1)(x^2+x+1)[(x^3)^{668}+....+1]+x(x-1)(x^2+x+1)[(x^3)^{668}+...+1]+(x^2+x+1)$
$=x^2(x-1)(x^2+x+1)A(x)+x(x-1)(x^2+x+1)A(x)+(x^2+x+1)$
$=(x^2+x+1)[x^2(x-1)A(x)+x(x-1)A(x)+1]\vdots x^2+x+1$
\(\frac{x+1}{2010}+\frac{x+2}{2009}+\frac{x+3}{2008}=\frac{x+4}{2007}+\frac{x+5}{2006}+\frac{x+6}{2005}\)
<=> \(\frac{x+1}{2010}+1+\frac{x+2}{2009}+1+\frac{x+3}{2008}+1=\frac{x+4}{2007}+1+\frac{x+5}{2006}+1+\frac{x+6}{2005}+1\)
<=> \(\frac{x+2011}{2010}+\frac{x+2011}{2009}+\frac{x+2011}{2008}-\frac{x+2011}{2007}-\frac{x+2011}{2006}-\frac{x+2011}{2005}\) =0
<=> (x+2011).(\(\frac{1}{2010}+\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2007}-\frac{1}{2006}-\frac{1}{2005}\) )=0
<=> x+2011=0
<=> x=-2011
Vậy pt có nghiệm là x=-2011
b: Ta có: f(x):g(x)
\(=\dfrac{x^3-2x^2+3x+a}{x+1}\)
\(=\dfrac{x^3+x^2-3x^2-3x+6x+6+a-6}{x+1}\)
\(=x^2-3x+6+\dfrac{a-6}{x+1}\)
Để f(x):g(x) là phép chia hết thì a-6=0
hay a=6
a: Thay a=3 vào f(x), ta được:
\(f\left(x\right)=x^3-2x^2+3x+3\)
\(\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{x^3-2x^2+3x+3}{x+1}\)
\(=\dfrac{x^3+x^2-3x^2-3x+6x+6-3}{x+1}\)
\(=x^2-3x+6-\dfrac{3}{x+1}\)
áp dụng định lí Bê-du ta có:
R(x)=(-1)2009+(-1)2008+...+(-1)2+(-1)+2010=2009
xin lỗi tớ không biết kết quả tớ tính được có đúng không nhưng cách làm hình như đúng rồi đấy