K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2021

bạn chép có thiếu số 15 không vậy

24 tháng 2 2021

có có mk thiếu số 15

14 tháng 7 2018

a) ta lấy 6 - 2 = 4 

12-6= 6

20-12=8

30-20=10

nhìn các số trên ta có thể thấy các số cộng với 2,,6,12,20,30,... đều là số chẵn là 2,4,6,8,0. nhưng lần này bạn sẽ thắc mắc vì sao lại bắt đầu cộng từ 4 mà không phải vì 2 là vì : 

ta đã thấy số 2 đứng đầu là sỗ chẵn rồi nên sẽ cộng từ 4

vậy dãy số mà tôi đưa ra là :

2,6,12,20,30,32,36 , 42.

"còn những câu khac tôi không hiểu . xin lỗi vì không thể trả lời hết ". 

24 tháng 2 2021

Lên google ý

24 tháng 2 2021

lên đến nửa năm cũng chưa thấy

15 tháng 7 2018

a) 3 số hạng tiếp theo là: 42;56;72.

b) Ta có: 2=1 x 2

               6=2 x 3

               12=3 x 4

               20=4 x 5

               30= 5 x 6

Quy luật của dãy số: mỗi số hạng bằng số thứ tự của nó nhân với số liền sau .

Vậy số hạng thứ 30 của dãy là: 

30 x 31=930

Đáp số: a) 42;56;72

             b) 930.

15 tháng 7 2018

cảm ơn bạn nha vậy câu b làm ntn vậy

17 tháng 12 2022

Gọi x là số cần tìm

Ta có: (x - 5) : 3 + 1 = 30

(x - 5) : 3 = 30 - 1

(x - 5) : 3 = 29

x - 5 = 29 \(\times\) 3

x - 5 = 87

x = 87 + 5

x = 92

Vậy số hạng thứ 30 của dãy là 92

17 tháng 12 2022

Kiến thức cần nhớ của dãy số cách đều ở tiểu học là:

     1, khoảng cách của dãy số là hiệu của hai số hạng liền kề trong dãy số. kí hiệu là k

       2, Số số hạng của dãy 

           (sc - sđ) : k + 1

      3, Tổng dãy số cách đều :

               ( sc + sđ) x số số hạng : 2

      4, tìm số hạng thứ n của dãy số cách đều :

              (n-1) .k + sđ

         6, trung bình cộng của dãy số cách đều bằng trung bình cộng của số cuối và số đầu của dãy số.

           Trên đây là các kiến thức cần nhớ về dãy số cách đều mà các em trong đội tuyển học sinh giỏi đều được dạy, em ghi nhớ để làm bài, vì khi đi thi không có ai giúp ình bằng chính mình tự giúp mình đâu 

              Giải :  

     Khoảng cách của dãy số cách đều trên là:

         8 - 5 = 3

    Số thứ 30 của dãy số là :

    ( 30 - 1) x 3 + 5 = 92

    Đáp số :......

26 tháng 8 2017

1)55=4+5+6+7+8+9+10+11

26 tháng 8 2017

1. 55= 1+2+3+...+9+10

2. 1,2,3,...30,31

26 tháng 8 2017

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN. 

29 tháng 12 2023

Trung bình cộng của 13 số chẵn liên tiếp là trung bình cộng của số thứ nhất và số thứ mười ba của dãy số.

 Tổng của số thứ nhất và số thứ mười ba là:

             24 x 2 = 48

Hiệu của số thứ nhất và số thứ mười ba của dãy số là:

          2 x (13 - 1) = 24 

Ta có sơ đồ: 

Số thứ nhất của dãy số là:

         (48 - 24): 2 = 12

Số thứ ba mươi của dãy số là:

         2 x (30 - 1) + 12 = 70

Đáp số:

       

         

11 tháng 10 2016

E đag cần gấp lắm

12 tháng 9 2017

1 + 5 + 9 + ........ + 420 + 405 tìm số hạng thứ 30 của dãy hộ mình với

5 tháng 10 2017

Mỗi số hạng là một phân số mà tử số mỗi phân số bằng tổng của tử số và mẫu số của phân số liền trước, mẫu số của mỗi phân số bằng tổng của mẫu số của phân số liền trước và tử số của phân số đó. 
Số hạng thứ 5 và thứ 6 của dãy là: 55/89; 144/233
b.Số hạng thứ 7 là: 377/610
Số hạng thứ 8 là: 987/1597
Số hạng thứ 9 là: 2584/4181
Vậy viết đến 2584/4181 thì dãy có 9 số hạng 
c. Số hạng liền sau 2584/4181 là: 6765/10946