Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: y/3 = z/7 => y/12 = z/28 (cùng nhân 2 vế với 1/4).
Mà x/11 = y/12 (GT)
=> x/11 = y/12 = z/28
<=> 2x/22 = y/12 = z/28 = 2x - y + z /22 - 12 + 28 = 152/38 = 4
2x/22 = 4 => 2x = 88 => x = 44.
y/12 = 4 => y = 48.
z/28 = 4 => z = 112.
Vậy x = 44, y=48 và z = 112
\(\frac{x}{11}=\frac{y}{12}\)(1)
\(\frac{y}{3}=\frac{z}{7}\Rightarrow\frac{y}{12}=\frac{z}{28}\)(2)
Từ ( 1 ) và ( 2 ) => \(\frac{x}{11}=\frac{y}{12}=\frac{z}{28}\)và 2x - y + z = 152
=> \(\frac{2x}{22}=\frac{y}{12}=\frac{z}{28}\)và 2x - y + z = 152
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{22}=\frac{y}{12}=\frac{z}{28}=\frac{2x-y+z}{22-12+28}=\frac{152}{38}=4\)
\(\frac{2x}{22}=4\Leftrightarrow\frac{x}{11}=4\Rightarrow x=44\)
\(\frac{y}{12}=4\Rightarrow y=48\)
\(\frac{z}{28}=4\Rightarrow z=112\)
#)Trả lời :
Câu 1 :
a) Gọi ba phần đó là a, b, c
Theo đầu bài, ta có : a, b, c tỉ lệ thuận với 3; 4; 5 => \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)và a + b + c = 552
Áp dụng tính chất dãy tỉ số bằng nhau ( đến đây bn tự lm típ hen )
b) Gọi ba phần đó là a, b, c
Theo đầu bài, ta có : a, b, c tỉ lệ nghịch với 3, 4, 6 => a, b, c tỉ lệ nghịch với \(\frac{1}{3};\frac{1}{4};\frac{1}{6}\)
=> \(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}\)và a + b + c = 315
Áp dụng tính chất dãy tỉ số bằng nhau ( đến đây tự lm típ hen :D )
Câu 2 :
\(\frac{x}{11}=\frac{y}{12}\Rightarrow\frac{2x}{22}=\frac{y}{12}\left(1\right)\)
\(\frac{y}{3}=\frac{z}{7}\Rightarrow\frac{y}{12}=\frac{z}{28}\left(2\right)\)
Từ (1) và (2) suy ra \(\frac{2x}{22}=\frac{y}{12}=\frac{z}{28}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{2x}{22}=\frac{y}{12}=\frac{z}{28}=\frac{2x-y+z}{22-12+28}=\frac{152}{38}\)
\(\Rightarrow x=44;y=48;z=112\)
#~Will~be~Pens~#
1a) Gọi ba phần đó là x, y, z.
Vì x, y, z tỉ lệ với 3, 4, 5 nên \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Áp dụng tính chất của dãy các tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{3+4+5}=\frac{552}{12}=46\)
\(\Rightarrow\hept{\begin{cases}x=46.3=138\\y=46.4=184\\z=46.5=230\end{cases}}\)
Vậy 3 phần đó là 138, 184, 230
Bài 2 :
Ta có : x - y = xy => x = xy + y = y ( x + 1 )
=> x : y = x + 1 ( vì y khác 0 )
Ta có : x : y = x - y => x + 1 = x - y => y = -1
Thay y = -1 vào x - y = xy , ta được x - (-1) = x (-1) => 2x = -1 => x = -1/2
Vậy x = -1/2 ; y = -1
d) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2y-4}{6}=\frac{3z-9}{12}\)
\(=\frac{x-1-2y+4+3z-9}{2-6+12}=\frac{x-2y+3z-6}{8}\)
\(=\frac{-10-6}{8}=\frac{-16}{8}=-2\)
\(\Rightarrow\hept{\begin{cases}x-1=-4\\y-2=-6\\z-3=-8\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=-4\\z=-5\end{cases}}\)
Vậy \(x=-3\); \(y=-4\); \(z=-5\)
e) \(x\left(x+y+z\right)=-12\); \(y\left(y+z+x\right)=18\); \(z\left(z+x+y\right)=30\)
\(\Rightarrow x\left(x+y+z\right)+y\left(y+z+x\right)+z\left(z+x+y\right)=-12+18+30\)
\(\Leftrightarrow\left(x+y+z\right)^2=36\)\(\Leftrightarrow\orbr{\begin{cases}x+y+z=-6\\x+y+z=6\end{cases}}\)
TH1: Nếu \(x+y+z=-6\)\(\Rightarrow x=\frac{-12}{-6}=2\); \(y=\frac{18}{-6}=-3\); \(z=\frac{30}{-6}=-5\)
TH2: Nếu \(x+y+z=6\)\(\Rightarrow x=\frac{-12}{6}=-2\); \(y=\frac{18}{6}=3\); \(z=\frac{30}{6}=5\)
Vậy các cặp giá trị \(\left(x;y;z\right)\)thỏa mãn là \(\left(2;-3;-5\right)\), \(\left(-2;3;5\right)\)
Bài 1:
Ta có: \(3x=2y\)
nên \(\dfrac{x}{2}=\dfrac{y}{3}\)
mà x+y=-15
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{-15}{5}=-3\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{2}=-3\\\dfrac{y}{3}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-9\end{matrix}\right.\)
Vậy: (x,y)=(-6;-9)
Bài 2:
a) Ta có: \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)
mà x+y-z=20
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y-z}{4+3-5}=\dfrac{20}{2}=10\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{4}=10\\\dfrac{y}{3}=10\\\dfrac{z}{5}=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40\\y=30\\z=50\end{matrix}\right.\)
Vậy: (x,y,z)=(40;30;50)
Đặt \(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}=k\Rightarrow x=3k;y=5k;z=7k\)
\(xy+yz+zx=3k.5k+5k.7k+7k.3k=k^2\left(15+35+21\right)=71k^2;xyz=3k.5k.7k=105k^3\)
Ta có : \(xyz\left(xz+yz+xy+xz+yz+xy\right)=477120\)
\(\Rightarrow xyz\left(xz+yz+xy\right)=238560\)\(\Rightarrow105k^3.71k^2=238560\Rightarrow k^5=32=2^5\Rightarrow k=2\)
Vậy : x= 6 ; y = 10 ; z = 14
giúp tớ nha các cậu tớ cảm ơn nhìu
Đơn giản lắm á bạn =)))
\(\hept{\begin{cases}\frac{x}{y}=12\\\frac{x}{y^2}=3\end{cases}\Rightarrow}\frac{x}{y}:\frac{x}{y^2}=12:3\Rightarrow\frac{x}{y}.\frac{y^2}{x}=4\Rightarrow y=4\)
\(\Rightarrow x=12.y=12.4=48\)
Vậy x=48 và y=4