K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2021

+) Xét n≥27n≥27

Ta có : A=427+42016+4n=427⋅(1+41989+4n−27)A=427+42016+4n=427⋅(1+41989+4n−27)

Dễ thấy 427=22⋅27=(227)2427=22⋅27=(227)2 là số chính phương

Do đó để A là số chính phương thì 1+41989+4n−271+41989+4n−27 là số chính phương

Đặt B2=1+41989+4n−27B2=1+41989+4n−27 và n−27=kn−27=k

Khi đó : B2=1+41989+4kB2=1+41989+4k

⇔B2−(2k)2=1+41989⇔B2−(2k)2=1+41989

⇔(B−2k)(B+2k)=1+41989⇔(B−2k)(B+2k)=1+41989

Ta có : B+2k≤1+41989B+2k≤1+41989 và B−2k≥1B−2k≥1

⇒B−2k+41989≥1+41989≥B+2k⇒B−2k+41989≥1+41989≥B+2k

Hay B−2k+41989≥B+2kB−2k+41989≥B+2k

⇔2⋅2k≤41989⇔2⋅2k≤41989

⇔2k+1≤23978⇔2k+1≤23978

⇔k+1≤3978⇔k+1≤3978

⇔k≤3977⇔k≤3977

Để n lớn nhất thì k lớn nhất,nên:

Nếu k=3977k=3977 ta có B2=1+41989+43977B2=1+41989+43977

⇔B2=(23977)2+2⋅23977+1⇔B2=(23977)2+2⋅23977+1

⇔B2=(23977+1)2⇔B2=(23977+1)2( đúng )

Vậy k=3977⇒n=3977+27=4004k=3977⇒n=3977+27=4004( thỏa )

+) Xét n≤27n≤27 nên hiển nhiên n≤4004n≤4004

Suy ra n lớn nhất để A là số chính phương thì n=4004

Nếu thấy đúng thì k cho mình nha

DD
20 tháng 6 2021

\(A=4^{27}+4^{2016}+4^n\)

Với \(n\ge27\)

\(A=4^{27}\left(1+4^{1989}+4^{n-27}\right)\)

\(A\)là số chính phương suy ra ​\(B=4^{n-27}+4^{1989}+1\)là số chính phương.​

\(B=\left(2^{n-27}\right)^2+2^{3978}+1\)

\(=\left(2^{3977+n-4004}\right)^2+2.2^{3977}+1\)

Với \(n=4004\)thì: 

\(B=\left(2^{3977}\right)^2+2.2^{3977}+1=\left(2^{3977}+1\right)^2\)là số chính phương. 

Với \(n>4004\)thì: 

\(B>\left(2^{3977+n-4004}\right)^2\)

\(B< \left(2^{3977+n-4004}\right)^2+2.2^{3977+n-4004}+1\)

\(=\left(2^{3977+n-4004}+1\right)^2\)

Suy ra \(\left(2^{3977+n-4004}\right)^2< B< \left(2^{3977+n-4004}+1\right)^2\)do đó \(B\)không là số chính phương. 

Vậy giá trị lớn nhất của \(n\)là \(4004\).

17 tháng 7 2021

a=230+22020+4n=415+41010+4n=415(1+4995+4n-15) mà 415 là số cp suy ra (1+4995+4n-15)là số cp

ta có: 1+4995+4n-15=22n-30+2.21989+1=(22n-30+1)2

đề 1+4995+4n-15=(2n-15)2+2.21989+1=(2n-15+1)2 là số cp thì n-15=1989 suy ra n=1974

nếu sai thì sorry bạn nha

DD
20 tháng 6 2021

\(A=4^{27}+4^{2016}+4^n\)

Với \(n\ge27\)

\(A=4^{27}\left(1+4^{1989}+4^{n-27}\right)\)

\(A\)là số chính phương suy ra \(B=4^{n-27}+4^{1989}+1\)là số chính phương. 

\(B=\left(2^{n-27}\right)^2+2^{3978}+1\)

\(=\left(2^{3977+n-4004}\right)^2+2.2^{3977}+1\)

Với \(n=4004\)thì: 

\(B=\left(2^{3977}\right)^2+2.2^{3977}+1=\left(2^{3977}+1\right)^2\)là số chính phương.

Với \(n>4004\)thì: 

\(B>\left(2^{3977+n-4004}\right)^2\)

\(B< \left(2^{3977+n-4004}\right)^2+2.2^{3977+n-4004}+1\)

\(=\left(2^{3977+n-4004}+1\right)^2\)

Suy ra \(\left(2^{3977+n-4004}\right)^2< B< \left(2^{3977+n-4004}+1\right)^2\)do đó \(B\)không là số chính phương. 

Vậy giá trị lớn nhất của \(n\)là \(4004\).

17 tháng 7 2021

nko tồn tại

28 tháng 7 2023

Với \(n=1\) thì \(A=2\) không là SCP.

Với \(n=2\) thì \(B=32\) không là SCP.

Với \(n>2\) thì ta có \(A=n^2-n+2< n^2\) và \(A=n^2-n+2>n^2-2n+1=\left(n-1\right)^2\).

Do đó \(\left(n-1\right)^2< A< n^2\) nên A không thể là số chính phương.

Vậy, không tồn tại số nguyên dương \(n\) nào thỏa ycbt.

28 tháng 7 2023

thanks

12 tháng 6 2017

Với \(n=0\Rightarrow A=0\)

Với \(n\ne0\)

Xét \(p=2\)thì ta có:

\(A=n^4+4n^3=n^2\left(n^2+4n\right)\)

Vì A là số chính phương nên 

\(\Rightarrow n^2+4n=x^2\)

\(\Leftrightarrow\left(n+2\right)^2-x^2=4\)

\(\Leftrightarrow\left(n+2+x\right)\left(n+2-x\right)=4\)

\(\Leftrightarrow\left(n+2+x,n+2-x\right)=\left(1,4;4,1;2,2;-1,-4;-4,-1;-2-2\right)\)

\(\Leftrightarrow\left(n,x\right)=\left(-4,0\right)\)

Xét \(p\ge3\) thì ta có \(p+1=2k+4\left(k\ge0\right)\)

\(A=n^4+4n^{2k+4}=n^4\left(1+4n^{2k}\right)\)

Vì A là số chính phương nên 

\(\Rightarrow1+n^{2k}=y^2\)

\(\Leftrightarrow\left(y-n^k\right)\left(y+n^k\right)=1\)

\(\Leftrightarrow\left(y-n^k;y+n^k\right)=\left(1,1;-1,-1\right)\)

Không có giá trị \(n\ne0\)thỏa mãn cái trên

Vậy ......

19 tháng 6 2017

chết lộn đề , 4n^(p-1) 

14 tháng 6 2021

                                                                                                                                     # Aeri #