Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Ta tính tổng các chữ số của số khi được tạo thành.
Xét các số có 1 chữ số thì tổng bằng \(45\).
Xét các số có 2 chữ số: tổng các chữ số hàng chục là \(10.1+...+10.9=10.45\)
tổng các chữ số hàng đơn vị là \(\left(0+1+2+...+9\right).9=9.45\)
Xét số có 3 chữ số thì tổng các chữ số là \(1+0+0=1\)
Do đó tổng các chữ số của số được tạo thành là \(45+10.45+9.45+1⋮̸9\)
Mà \(2016⋮9\)nên số tạo thành không chia hết cho \(2016\).
Lời giải:
$125=5^3$
$A=n^3+7n^2+6n=n(n^2+7n+6)=n(n+1)(n+6)$
Nếu $n=5k$ với $k$ nguyên thì $n+1,n+6$ đều không chia hết cho $5$.
Do đó để $A\vdots $ thì $n\vdots 125$
Nếu $n=5k+1$ thì $n,n+1,n+6$ đều không chia hết cho $5$ nên $A\not\vdots 5$
Nếu $n=5k+2, 5k+3$ thì tương tự $n=5k+1$, loại
Nếu $n=5k+4$ thì $A=(5k+4)(5k+5)(5k+10)=25(5k+4)(k+1)(k+2)$
Để $A\vdots 125$ thì $(k+1)(k+2)\vdots 5$. Khi đó, $k+1\vdots 5$ hoặc $k+2\vdots 5$, hay $k$ có dạng $5t-1$ hoặc $5t-2$ với $t$ nguyên
$\Rightarrow n=5k+4=5(5t-1)+4=25t-1$ hoặc $n=5(5t-2)+4=25t-6$ với $t$ nguyên
Vậy $n$ có dạng $125t, 25t-1, 25t-6$ với $t$ là số nguyên nào đó.
Bạn xem trả lời ở đây nhé
Câu hỏi của Bùi Thị Hoài - Toán lớp 9 - Học toán với OnlineMath