K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2023

Với \(n=1\) thì \(A=2\) không là SCP.

Với \(n=2\) thì \(B=32\) không là SCP.

Với \(n>2\) thì ta có \(A=n^2-n+2< n^2\) và \(A=n^2-n+2>n^2-2n+1=\left(n-1\right)^2\).

Do đó \(\left(n-1\right)^2< A< n^2\) nên A không thể là số chính phương.

Vậy, không tồn tại số nguyên dương \(n\) nào thỏa ycbt.

28 tháng 7 2023

thanks

3 tháng 4 2020

1. Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath

17 tháng 7 2021

a=230+22020+4n=415+41010+4n=415(1+4995+4n-15) mà 415 là số cp suy ra (1+4995+4n-15)là số cp

ta có: 1+4995+4n-15=22n-30+2.21989+1=(22n-30+1)2

đề 1+4995+4n-15=(2n-15)2+2.21989+1=(2n-15+1)2 là số cp thì n-15=1989 suy ra n=1974

nếu sai thì sorry bạn nha

15 tháng 8 2020

a) ta có với n nguyên dương n2+n+1=n2+2n+1-n=(n+1)2-n

như vậy có n2<n2+n+1<n2+2n+1 hay n2<n2+n+1<(n+1)2

mà n2 và (n+1)2 là 2 số chính phương liên tiếp

=> n2+n+1 không là số chính phương với mọi n nguyên dương (đpcm)

6 tháng 11 2017

Để \(n^2+2n+12\) là số chính phương

\(\Rightarrow n^2+2n+12=t^2\left(t\in Z^{\text{*}}\right)\)

\(\Rightarrow t^2-\left(n^2+2n+1\right)=11\)

\(\Rightarrow t^2-\left(n+1\right)^2=11\)

\(\Rightarrow\left(t+n+1\right)\left(t-n-1\right)=11\)

Dễ thấy: \(t+n+1>t-n-1\forall t,n\in Z^{\text{*}}\)

\(\Rightarrow\hept{\begin{cases}t+n+1=11\\t-n-1=1\end{cases}}\)\(\Rightarrow\hept{\begin{cases}t=6\\n=4\end{cases}}\)(thỏa)

Vậy \(n=4\) thì \(n^2+2n+12\) là SCP