Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
....
a) \(n\in\left(-1,1,3,5\right)\)thì A có giá trị nguyên
b) Ko hiểu
***
A=n+1n−2
a. để B là phân số thì n-2 khác 0 => n khác 2
b.A=n+1n−2= n−2+3n−2= n−2n−2+3n−2=1+3n−2
để B nguyên khi n-2 là ước của 3
ta có ước 3= (-1;1;3;-3)
nên n-2=1=> n=3
n-2=-1=> n=1
n-2=3=> n=5
n-2=-3=> n=-1
vậy để A nguyên thì n=(-1;1;3;5)
\(A=\dfrac{n-6}{n-2}=\dfrac{n-2-4}{n-2}=1-\dfrac{4}{n-2}\)
Để \(A_{max}\) thì \(1-\dfrac{4}{n-2}\) max
=>\(-\dfrac{4}{n-2}\) max
=>\(\dfrac{4}{n-2}\) min
=>n-2=-1
=>n=1
Để \(A_{min}\) thì \(\dfrac{4}{n-2}\) max
=>n-2=1
=>n=3
Vậy: \(A_{max}=\dfrac{1-6}{1-2}=\dfrac{-5}{-1}=5\) khi n=1
\(A_{min}=\dfrac{3-6}{3-2}=\dfrac{-3}{1}=-3\) khi n=3
a)Để A là phân số
\(\Rightarrow n-2\ne0\Leftrightarrow n\ne2\)
b)Để \(A\in Z\)
\(\Rightarrow-5\)chia hết \(n-2\)
\(\Rightarrow n-2\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
\(\Rightarrow n\in\left\{3;1;7;-3\right\}\)
a) de A la phan so thi n-2=1=>n=3
b)de A la so nguyen thi -5chia het cho n-2=>n-2 thuoc uoc cua -5={5,1,-1,-5}=>n=>{10,6,4,0} thi A la so nguyen
2.
\(\frac{3n+9}{n-4}\in Z\)
\(\Rightarrow3n+9⋮n-4\)
\(\Rightarrow3n-12+21⋮n-4\)
\(\Rightarrow3\times\left(n-4\right)+21⋮n-4\)
\(\Rightarrow21⋮n-4\)
\(\Rightarrow n-4\inƯ\left(21\right)\)
\(\Rightarrow n-4\in\left\{-7;-3;-1;1;3;7\right\}\)
\(\Rightarrow n\in\left\{-3;1;3;5;7;11\right\}\)
\(B=\frac{6n+5}{2n-1}\in Z\)
\(\Rightarrow6n+5⋮2n-1\)
\(\Rightarrow6n-3+8⋮2n-1\)
\(\Rightarrow3\left(2n-1\right)+8⋮2n-1\)
\(\Rightarrow8⋮2n-1\)
\(\Rightarrow2n-1\inƯ\left(8\right)\)
\(\Rightarrow2n-1\in\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
\(\Rightarrow2n\in\left\{-7;-3;-1;0;2;3;5;9\right\}\)
\(n\in Z\)
\(\Rightarrow n\in\left\{0;1\right\}\)
\(A=\frac{3n-9}{n-4}=\frac{3n-12+3}{n-4}=\frac{3\left(n-4\right)+3}{n-4}=\frac{3\left(n-4\right)}{n-4}+\frac{3}{n-4}=3+\frac{3}{n-4}\)
Để p/s A có giá trị nguyên thì 3 chia hết cho n+4
=>n+4 E Ư(3)={-3;-1;1;3}
=>n E {-7;-5;-3;-1}
Vậy........
\(B=\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=\frac{3.\left(2n-1\right)+8}{2n-1}=\frac{3.\left(2n-1\right)}{2n-1}+\frac{8}{2n-1}=3+\frac{8}{2n-1}\)
Để B là số nguyên thì 8 chia hết cho 2n-1
Tới đây tương tự câu trên nhé
Để A nguyên thì 3n - 9 chia hết n - 4
<=> (3n - 12) + 3 chia hết n - 4
=> 3.(n - 4) + 3 chia hết n - 4
=> 3 chia hết n - 4
=> n - 4 thuộc Ư(3)
=> Ư(3) = {-1;1;-3;3}
Ta có:
n - 4 | -1 | 1 | -3 | 3 |
n | 3 | 5 | 1 | 7 |
Bg
Ta có: C = \(\frac{n^2-5}{n^2-2}\) (với n thuộc Z)
Để C nguyên thì n2 - 5 \(⋮\)n2 - 2
=> n2 - 5 - (n2 - 2) \(⋮\)n2 - 2
=> n2 - 5 - n2 + 2 \(⋮\)n2 - 2
=> (n2 - n2) - (5 - 2) \(⋮\)n2 - 2
=> 3 \(⋮\)n2 - 2
=> n2 - 2 thuộc Ư(3)
Ư(3) = {+1; +3}
=> n2 - 2 = 1 hay -1 hay 3 hay -3
.....Có làm thì mới có ăn :))
=> n = {-1; 1}
\(C=\frac{n^2-5}{n^2-2}=\frac{n^2-2-3}{n^2-2}=1-\frac{3}{n^2-2}\)
Để C nguyên => \(\frac{3}{n^2-2}\)nguyên
=> \(3⋮n^2-2\)
=> \(n^2-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
n là số nguyên => n = \(\pm1\)