Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(n+6\right)⋮\left(n+1\right)\Rightarrow\left(n+1\right)+5⋮\left(n+1\right)\)
\(\Rightarrow\left(n+1\right)\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
Do \(n\in N\)
\(\Rightarrow n\in\left\{0;4\right\}\)
b) \(\left(4n+9\right)⋮\left(2n+1\right)\Rightarrow2\left(2n+1\right)+7⋮\left(2n+1\right)\)
\(\Rightarrow\left(2n+1\right)\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Do \(n\in N\)
\(\Rightarrow n\in\left\{0;3\right\}\)
\(3n-3+5⋮n-1\)
\(\Leftrightarrow3\left(n-1\right)+5⋮n-1\)
có 3(n-1) chia hết cho n-1
\(\Rightarrow5⋮n-1\)
=> n-1 thuộc ước của 5
tức là:
n-1=5
n-1=-5
n-1=1
n-1=-1
a, n - 1 chia hết cho n - 1 => 3 ( n -1 ) chia hết cho n - 1 => 3n - 3 chia hết cho n - 1
Mà 3n + 2 = 3n - 3 + 5 Vì 3n - 3 chia hết cho n - 1 => 5 chia hết cho n - 1
=> n - 1 thuộc 1 và 5 => n thuộc 2 và 6
b, Tương tự
c, \(\hept{\begin{cases}n^2+5⋮n+1\\n+1⋮n+1\end{cases}}\Rightarrow\hept{\begin{cases}n^2+5⋮n+1\\n^2+n⋮n+1\end{cases}}\Rightarrow5-n⋮n+1\)
\(\hept{\begin{cases}5-n⋮n+1\\n+1⋮n+1\end{cases}}\Rightarrow5-n+n+1⋮n+1\)
\(\Rightarrow6⋮n+1\Rightarrow n+1\inƯ\left(6\right)\Rightarrow n+1\in\left\{1;2;3;6\right\}\Rightarrow n\in\left\{0;1;2;5\right\}\)
a) Ta có : 3n + 2 chia hết cho n - 1
=> 3n + 2 - 3.( n - 1) chia hết cho n - 1
=> 3n + 2 - ( 3n - 3 ) chia hết cho n - 1
=> 3n + 2 - 3n + 3 chia hết cho n - 1
=> 5 chia hết cho n -1
=> n -1 thuộc Ư(5) = { 1 ; - 1 ; 5 ; -5}
Ta có bảng ;
n-1 | 1 | -1 | 5 | -5 |
n | 2 | 0 | 6 | -6 |
Vậy n thuộc { 2;0;6;-6}
b) Ta có : 3n + 24 chia hết cho n -4
=> 3n + 24 - 3.(n-4) chia hết cho n -4
=> 3n + 24 - (3n - 12 ) chia hết cho n -4
=> 3n + 24 - 3n + 12 chia hết cho n -4
=> 36 chia hết cho n -4
=> n - 4 thuộc Ư(36) ( bạn tự làm nhé)
c) Tương tự nhé
a) n - 6 chia hết cho n-1
n - 1 - 5 chia hết cho n - 1
n - 1 thuộc U(-5)
Rồi bạn liệt kê ra
a) n -6 chia hết cho n-1
n-1-5 chia hết cho n -1
n-1 chia hết cho n-1
=> n-1 € Ư (5)={1;5;-1;-5}
+ n-1 =1=>n=2
+n-1=5=>n=6
+n-1=-1=>n=0
+n+1=-5=>n=-4
=>n={2;6;0;-4}
a) \(4\left(n-1\right)-3⋮\left(n-1\right)\)
\(\Rightarrow\left(n-1\right)\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
Do \(n\in N\Rightarrow n\in\left\{0;2;4\right\}\)
b) \(-5\left(4-n\right)+12⋮\left(4-n\right)\)
\(\Rightarrow\left(4-n\right)\inƯ\left(12\right)=\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\)
Do \(n\in N\Rightarrow n\in\left\{16;10;8;7;6;5;3;2;1;0\right\}\)
c) \(-2\left(n-2\right)+6⋮\left(n-2\right)\)
\(\Rightarrow\left(n-2\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
Do \(n\in N\Rightarrow n\in\left\{0;1;3;4;5;8\right\}\)
d) \(n\left(n+3\right)+6⋮\left(n+3\right)\)
\(\Rightarrow\left(n+3\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
Do \(n\in N\Rightarrow n\in\left\{0;3\right\}\)
Lời giải:
$n^3+3n+1\vdots n+1$
$\Rightarrow (n^3+1)+3n\vdots n+1$
$\Rightarrow (n+1)(n^2-n+1)+3(n+1)-3\vdots n+1$
$\Rightarrow (n+1)(n^2-n+4)-3\vdots n+1$
$\Rightarrow 3\vdots n+1$
$\Rightarrow n+1\in \left\{1; 3\right\}$ (do $n+1$ là stn)
$\Rightarrow n\in \left\{0; 2\right\}$
a) Ta có :
\(n+1=n-2+3\)chia hết cho \(n-2\)\(\Rightarrow\)\(3\)chia hết cho \(n-2\)\(\Rightarrow\)\(\left(n-2\right)\inƯ\left(3\right)\)
Mà \(Ư\left(3\right)=\left\{1;-1;3;-3\right\}\)
Do đó :
\(n-2=1\Rightarrow n=1+2=3\)
\(n-2=-1\Rightarrow n=-1+2=1\)
\(n-2=3\Rightarrow n=3+2=5\)
\(n-2=-3\Rightarrow n=-3+2=-1\)
Vậy \(n\in\left\{3;1;5;-1\right\}\)
a, n + 1 chia hết cho n - 2
\(\Rightarrow n-2+3\) chia hết cho \(n-2\)
\(\Rightarrow\) 3 chia hết cho n - 2
\(\Rightarrow n-2\inƯ\left(3\right)\)
Mà \(Ư\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n-2\in\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n\in\left\{3;1;5;-1\right\}\)
n+6 ⋮ n-5
Vì n-5 ⋮ n-5
=> n+6 - (n-5) ⋮ n-5
=> n+6 - n+5 ⋮ n-5
=> 11 ⋮ n-5
=> n-5 \(\in\)Ư(11)
=> n-5 \(\in\){1;-1;11;-11}
=> n \(\in\){6;4;16;-6}
Vậy...
3n+22 ⋮ n-5
Vì 3(n-5) ⋮ n-5
=> 3n+22 - 3(n-5) ⋮ n-5
=> 3n+22 - 3n+15 ⋮ n-5
=> 37 ⋮ n-5
=> n-5 \(\in\)Ư(37)
=> n-5 \(\in\){1;-1;37;-37}
=> n \(\in\){6;4;42;-32}
Vậy...
2(n+1) ⋮ n-2
Vì 2(n-2) ⋮ n-2
=> 2(n+1) - 2(n-2) ⋮ n-2
=> 2n+2 - 2n+4 ⋮ n-2
=> 6 ⋮ n-2
=> n-2 \(\in\)Ư(6)
=> n-2 \(\in\){1;-1;2;-2;3;-3;6;-6}
=> n \(\in\){3;1;4;0;5;-1;8;-4}
Vậy...
a) (n+6)-(n-5) chia hết cho n-5
suy ra 1chia hết cho n-5
phần còn lại tự giải
b) 3n+2 chia hết cho n-5
3n-15+37 chia hết cho n-5
(3n-15)+37 chia hết cho n-5
3x(n-5)+37 chia hết cho n-5
37 chia hết cho n-5
tự giải phần sau
c) chịu