K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2017

+Nếu p = 2 ⇒⇒ p + 2 = 4 (loại)

+Nếu p = 3 ⇒⇒ p + 6 = 9 (loại)

+Nếu p = 5 ⇒⇒ p + 2 = 7, p + 6 = 11, p + 8 = 13, p + 12 = 17, p + 14 = 19 (thỏa mãn)

+Nếu p > 5, ta có vì p là số nguyên tố nên ⇒⇒ p không chia hết cho 5 ⇒⇒ p = 5k+1, p = 5k+2, p = 5k+3, p = 5k+4

   -Với p = 5k + 1, ta có: p + 14 = 5k + 15 = 5 ( k+3) ⋮⋮ 5 (loại)

   -Với p = 5k + 2, ta có: p + 8 = 5k + 10 = 5 ( k+2 ) ⋮⋮ 5 (loại)

   -Với p = 5k + 3, ta có: p + 12 = 5k + 15 = 5 ( k+3) ⋮⋮ 5 (loại)

   -Với p = 5k + 4, ta có: p + 6 = 5k + 10 = 5 ( k+2) ⋮⋮ 5 (loại)

⇒⇒ không có giá trị nguyên tố p lớn hơn 5 thỏa mãn

Vậy p = 5 là giá trị cần tìm

25 tháng 1 2017

P=2=>2+6=8 \(\notin\)P (loại)

P=3=>3+6=9\(\notin\)P (loại)

P=5=>5+6=11 \(\in\)P (TM)

          5+8=13 \(\in\)P (TM)

          5+12=17 \(\in\)P (TM)

         5+14=19 \(\in\)P (TM) 

P>5 =>P=5.k+1 hoặc P=5.k+2 hoặc P=5.k+3 hoặc P=5.k+4 (k\(\in\)N)

Nếu P=5.k+1 thì P+14=5.k+1+14=5.(k+1)\(⋮5\) =>P+14 \(\notin\)P (loại)

Nếu P=5.k+2 thì P+8=5.k+2+8 =5.(k+2)\(⋮5\)=>P+8 \(\notin\)P(loại)

Nếu P=5.k+3 thì P+12=5.k+3+12=5.(k+3)\(⋮5\)=>P+12 \(\notin\)P(loại)

Nếu P=5.k+4 thì P+6 =5.k+6+4 =5.(k+4) \(⋮5\)=>P+6 \(\notin\)P(loại)

=>P=5(TM)

Vậy để P+6,P+8,P+12,P+14 đều là các số nguyên tố thì P=5

tk cho minh nha 

16 tháng 11 2014

neu p=2 thi cac so tren la hop so (loai)

neup=3 thi p+6=9 (la hop so,loai)

neu p=5 thi cac so tren deu la so ngto (chon)

Neu p > 5 thi p co dang :5k+1;5k+2;5k+3;5k+4 (k thuoc N)

voi p=5k+1 thi p+14=5k+15 chia het cho 5(la hop so,loai)

.....p=5k+2....p+8=5k+10..............................................

......p=5k+3...p+12=5k+15............................................

......p=5k+4...p+6=5k+10..............................................

suy ra p chi co the bang 5

vay p=5

17 tháng 11 2014

mọi số tự nhiên đều viết được dưới dạng 5k,5k+1,5k+2,5k+3,5k+4

nếu p = 5k+1 suy ra p+14=5p+15=5(p+3)chia hết cho 5 (loại)

nếu p = 5k+2 suy ra p+8=5p+10=5(p+2) chia hết cho 5 (loại) 

nếu p = 5k+3 suy ra p+12=5p+15=5(p+3) chia het cho 5 (loại)

nếu p = 5k+4 suy ra p+6= 5p+10=5(p+2)chia hết cho 5 (loại)

vậy p chỉ có thể bằng 5k.mà p là nguyên tố nên p =5.

vậy p=5

20 tháng 2 2018

Nếu p=2=> p+6=2+6=8 ko phải nguyên tố

Nếu p = 3=> p+6= 3+6= 9 ko phải nguyên tố

Nếu p=5=> p+6=11, p+8=13, p+12=17, p+14=19 đều là số nguyên tố

Nếu p>5=>p=5k+1,5k+2,5k+3,5k+4(k thuộc N ,k khác 0)

Với p=5k+1=>p+14=5k+1+14=5k+15 chia hết cho 5 mà p+14>5=> p+14 ko là số guyên tố

Với p=5k+2=>p+8=5k+2+8=5k+10 chia hết cho 5 mà p+8>5=>p+8 ko là số nguyên tố

Với p=5k+3=>p+12=5k+3+12=5k+15 chia hết cho 5 mà p+12>5=>p+12 ko là số nguyên tố

Với p=5k+4=>p+6=5k+4+6=5k+10 chia hết cho 5 mà p+6>5=>p+6 ko là số nguyên tố

Vậy p=5

27 tháng 11 2014

cách làm sao bạn

 

17 tháng 12 2014

mọi số tự nhiên đều viết được dưới dạng 5k,5k+1,5k+2,5k+3,5k+4

nếu p = 5k+1 suy ra p+14=5p+15=5(p+3)chia hết cho 5 (loại)

nếu p = 5k+2 suy ra p+8=5p+10=5(p+2) chia hết cho 5 (loại) 

nếu p = 5k+3 suy ra p+12=5p+15=5(p+3) chia het cho 5 (loại)

nếu p = 5k+4 suy ra p+6= 5p+10=5(p+2)chia hết cho 5 (loại)

vậy p chỉ có thể bằng 5k.mà p là nguyên tố nên p =5.

vậy p=5

2 tháng 5 2018

Vì p là số nguyên tố

+ Nếu p = 2 thì p + 6 = 2 + 6 = 8 \(⋮\)2 và 8 > 2 là hợp số ( loại )

+ Nếu p = 3 thì p + 12 = 15 \(⋮\)3 và 15 > 3 là hợp số ( loại )

+ Nếu p = 5 thì các số p + 6 , p + 8 , p + 12 , p + 14 đều là số nguyên tố ( chọn )

Với p là số nguyên tố lớn hơn 5 p chỉ có 1 trọng 4 dạng 5k + 1 , 5k + 2 , 5k + 3 , 5k + 4 ( k thuộc N* )

+ Nếu p = 5k + 1 thì p + 14 = 5k + 15 = 5 . ( k + 3 ) \(⋮\)5 và lớn hơn 5 là hợp số ( loại )

Làm tương tự với 3 số 5k + 2 , 5k + 3 , 5k + 4 thấy không có số nào thỏa mãn

Vậy p = 5 thì ....

2 tháng 5 2018

+) Với p = 2 =>p + 6 = 2 + 6 = 8 là hợp số => loại

+) Với p = 3 => p + 12 = 3 + 12 = 15 là hợp số => loại

+) Với p = 5 => p + 6 = 11 ; p + 8 = 13 ; p + 12 = 17 ; p + 14 = 19 đều là các số nguyên tố => chọn

+) Với p > 5 và p nguyên tố => p có 1 trong 4 dạng : 5k + 1 ; 5k + 2 ; 5k + 3 ; 5k + 4 ( k \(\inℕ^∗\))

Nếu p = 5k + 1 => p + 14 = 5k + 1 + 14 = 5k + 15 là hợp số => loại

Nếu p = 5k + 2 => p + 8 = 5k + 2 + 8 = 5k + 10 là hợp số => loại

Nếu p = 5k + 3 => p + 12 = 5k + 3 + 12 = 5k + 15 là hợp số => loại

Nếu p = 5k + 4 => p + 6 = 5k + 4 + 6 = 5k + 10 là hợp số => loại

Vậy  : p = 5

P/s :  vì đề yêu cầu : Tìm số nguyên tố p để p + 6 , p + 8 , p + 12 , p + 14 đều là các số nguyên tố nên chỉ cần chỉ ra 1 cái là hợp số là được,không cần viết ra cả nhé!

27 tháng 1 2017

Do p là số nguyên tố => p lớn hơn hoặc bằng 2

 p = 2 => p + 6 = 2 + 6 = 8 là hợp số <loại>

 p = 3 => p + 6 = 3 + 6 = 9 là hợp số <loại>

 p = 5 => p + 6 = 5 + 6 = 11

              p + 8 = 5 + 8 = 13

              p + 12 = 12 + 5 = 17

              p + 14 = 5 + 14 = 19

Vậy p = 3 thỏa mãn

Do p là số nguyên tố và p > 5 => p không chia hết cho 5

=> p + 14 chia hết cho 5 và p + 14 > 5 => p + 14 là hợp số

Vậy p = 3 thỏa mãn đề bài

29 tháng 1 2017

đó phải là số nguyên tố nên p >2 vì 2 cộng với các số kia nó sẽ là số chẵn lớn hơn 2                                                                          ta sẽ chọn số 3:3+6 bằng 9 mà ̣9 ko phải là số nguyên tố nên ta loại số 3                                                                                          ta sẽ chọn số 5:5+6 bằng 11;5+8 bảng 13;5+12 bảng 17;5+14 bằng 19                                                                                             mà 11;13;17;19 là số nguyên tố;5 cũng là số nguyên tố nên p bằng 5 là thỏa mãn yêu cầu của đầu bài

+Nếu p = 2 ⇒⇒ p + 2 = 4 (loại)
+Nếu p = 3 ⇒⇒ p + 6 = 9 (loại)
+Nếu p = 5 ⇒⇒ p + 2 = 7, p + 6 = 11, p + 8 = 13, p + 12 = 17, p + 14 = 19 (thỏa mãn)
+Nếu p > 5, ta có vì p là số nguyên tố nên ⇒⇒ p không chia hết cho 5 ⇒⇒ p = 5k+1, p = 5k+2, p = 5k+3, p = 5k+4
-Với p = 5k + 1, ta có: p + 14 = 5k + 15 = 5 ( k+3) ⋮⋮ 5 (loại)
-Với p = 5k + 2, ta có: p + 8 = 5k + 10 = 5 ( k+2 ) ⋮⋮ 5 (loại)
-Với p = 5k + 3, ta có: p + 12 = 5k + 15 = 5 ( k+3) ⋮⋮ 5 (loại)
-Với p = 5k + 4, ta có: p + 6 = 5k + 10 = 5 ( k+2) ⋮⋮ 5 (loại)
⇒⇒ không có giá trị nguyên tố p lớn hơn 5 thỏa mãn
Vậy p = 5 là giá trị cần tìm