Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BC (4;5;6)= {60;120;180;240;300...}
Vì số đó nằm trong khoảng cách từ 200 đến 300 nên ta có số 240
Vậy số đó là: 240-1=239
BC (4;5;6)= {60;120;180;240;300...}
Vì số đó nằm trong khoảng cách từ 200 đến 300 nên ta có số 240
Vậy số đó là: 240-1=239
Ta có: a chia 4 dư 3=> a+1 chia hết cho 4
a chia 5 dư 4 => a+1 chia hết cho 5
a chia 6 dư 5 => a+1 chia hết cho 6
=> a+1 chia hết cho BC(4,5,6). Mà BCNN(4,5,6)=60
=> a+1 thuộc {0;60;120;180;240;300;......}
Mà a nằm trong khoảng 200 đến 300 nên a +1 nằm trong khoảng 201 đến 301
Vậy a+1 thuộc {240;300}
=> a thuộc {239;299}
Gọi số a là abc
nếu chia 5 dư 4 thì c =4 hoặc là 9
Các số chia hết cho 4 và 6 dưới 100 là:
B(4;6)={12;24;36;60;84;96}
Theo đề bài, a phải là 2
Nếu 4 là c mà chia 4 dư 3 thì b sẽ ko có số nào
Nếu 9 là c mà chia 4 dư 3 thì b là 1;3;5;7;9
219:6 dư 3; 239:6 dư 5; 259: 6 dư 1; 279:6 dư 3; 299:6 dư 0
Vậy kết quả là 239
BC(4,5,6)={60,120,180,240,300...}
Ví số đó nằm trong khoảng 200 đến 300 nên có số 240
Vậy số đó là 240-1=239
tk mình nhé@@@@@@@@@@@@@@@@@@@@@@@@@@2
thanks
5/8+3/8÷3/11-10
5/8+3/8×11/3-10
5/8+33/24-10
15/24+33/24-10
48/24-10
48/24-10/1
48/24-240/24
-192/24=4/1
Ta có theo để bài:
a: 4 dư 3
a: 5 dư 4
a: 6 dư 5
=> a+ 1 chia hết cho 3; 4;5
=> a+1 là BC( 3;4;5)
Ta có: BCNN( 3;4;5)= 60
=> a+ 1 thuộc { 60; 120; 180; 240; ...}
Mà a nằm trong khoảng từ 200 đến 300
=> a+1 cũng vậy
=> a+ 1= 240
=> a= 240- 1
=> a= 239
Vậy số tự nhiên đó là 239.
\(BC\left(4;5;6\right)=\left\{60;120;180;240;300...\right\}\)
Vì số đó nằm trong khoảng cách từ \(200\) đến \(300\) nên ta có số \(240\)
Vậy số đó là:
\(240-1=239\)
Đáp số : \(239\)
a : 15 dư 8; a : 35 dư 13 và 200 < a < 300
Vì a : 15 dư 8 nên a = 15k + 8; k\(\in\)N
⇒ 200 < 15k < 300; k \(\in\) N
⇒ 13,3 < k < 20; k \(\in\) N ⇒ k \(\in\){14; 15; 16; 17; 18; 19} (1)
Mặt khác ta có: (15k + 8 - 13) ⋮ 35
⇒ (15k - 5) ⋮ 35
⇒ 5.(3k - 1)⋮ 35
⇒ (3k - 1)⋮ 7
⇒ 3k - 1 \(\in\) B(7) = {0; 7; 14; 21; 28; 35; 42; 49; 56; 63;..}
⇒ k \(\in\) {\(\dfrac{1}{3}\); \(\dfrac{8}{3}\); \(\dfrac{13}{3}\); \(\dfrac{22}{3}\); \(\dfrac{29}{3}\); 12; \(\dfrac{43}{3}\); \(\dfrac{50}{3}\);19;\(\dfrac{64}{3}\);...;} (2)
Kết hợp (1) và (2) ta có: k =19
Thay k = 19 vào biểu thức: a = 15k+8 ta có
a = 15.19 + 8
a = 293
Kết luận số tự nhiên thỏa mãn đề bài là: 293
Cách hai:
Vì a : 15 dư 8 và chia 35 dư 13 nên khi ta thêm 22 đơn vị thì a chia hết cho cả 15 và 35
Ta có: \(\left\{{}\begin{matrix}a+22⋮15\\a+22⋮35\end{matrix}\right.\) ⇒ a + 22 \(\in\) BC(15; 35) (200 <a<300; a\(\in\)N)
⇒ 222 < a + 22 < 322
15 = 3.5; 35 = 5.7 ⇒ BCNN(15; 35) = 3.5.7 = 105
BC(15; 35) = {0; 105; 210; 315;...}
mà 222 < a + 22 < 322 và a \(\in\) BC(15;35)
⇒ a + 22 = 315
⇒ a = 315 - 22
⇒ a = 293
Kết luận: Vậy số tự nhiên thỏa mãn yêu cầu đề bài là 293