Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=n^5+n^4+1=n^5-n^2+n^4-n+n^2+n+1\)
\(=n^2\left(n-1\right)\left(n^2+n+1\right)+n\left(n-1\right)\left(n^2+n+1\right)+n^2+n+1\)
\(=\left(n^2+n+1\right)\left(n^3-n+1\right)\)
+) Với \(n=0\Rightarrow B=1\)không là số nguyên tố (loại)
+) Với \(n=1\Rightarrow B=3\)là số nguyên tố(thỏa mãn)
+) Với \(n\ge2\left(n\in N\right)\Rightarrow n^3-n+1\ge n^2+n+1\ge7\)
Do đó B là hợp số
Vậy n=1 là giá trị cần tìm.
Ta có:\(n^5+n^4+1=n^5+n^4+n^3-n^3+1\)
\(=n^3\left(n^2+n+1\right)-\left(n-1\right)\left(n^2+n+1\right)\)
\(=\left(n^2+n+1\right)\left(n^3-n-1\right)\)
Đk để là số nguyên tố thì:
\(n^2+n+1=1\)hoặc \(n^3-n-1=1\)
Xét \(n^2+n+1=1\Rightarrow n^2+n=0\Rightarrow\orbr{\begin{cases}n=1\left(tm\right)\\n=-1\left(ktm\right)\end{cases}}\)
Xét \(n^3-n+1=1\Rightarrow n^3-n=0\Rightarrow n\left(n^2-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}n=0\left(tm\right)\\\orbr{\begin{cases}n=1\left(tm\Rightarrow\right)\\n=-1\left(ktm\right)\end{cases}}\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}n=0\left(tm\right)\\n=1\left(tm\right);n=-1\left(ktm\right)\end{cases}}\)
Tại \(n=0\Rightarrow A=1\left(ktm\right)\)Vì 1 không phải số ngto
Tại\(n=1\Rightarrow A=3\left(tm\right)\)vì 3 là số ngto
Vậy ...
Lời giải:
Nếu $n$ chẵn thì \(n^4+4^n\) chẵn. Hiển nhiên \(n\neq 0\) nên \(n^4+4^n>2\). Do đó \(n^4+4^n\) không thể là số nguyên tố
Nếu $n$ lẻ:
\(n^4+4^n=(n^2+2^n)^2-2^{n+1}n^2=(n^2+2^n-2^{\frac{n+1}{2}}n)(n^2+2^n+2^{\frac{n+1}{2}}n)\)
Do $n$ lẻ nên \(\frac{n+1}{2}\in\mathbb{N}\). Do đó mỗi thừa số đều là số nguyên dương.
Vì \(n^4+4^n\in\mathbb{P}\Rightarrow \) một trong hai thừa số trên phải bằng $1$. Hiển nhiên
\(n^2+2^n-2^{\frac{n+1}{2}}n=1\)
Bằng quy nạp, ta sẽ CM rằng \(2^\frac{n-1}{2}>n\) với \(n\geq 7\) $(1)$
Thật vậy:
Với \(n=7,8,...\) điều trên đúng. Giả sử nó đúng với \(n=k\) tức là \(2^\frac{k-1}{2}>k\)
Khi đó ta có \(2^{\frac{k+1-1}{2}}=2^{\frac{k-1}{2}}.2^{\frac{1}{2}}>2^{\frac{1}{2}}k>k+1\) với mọi \(k\geq 7\)
Do đó ta có $(1)$ Suy ra với \(n\geq 7 \Rightarrow n^2+2^n-2^{\frac{n+1}{2}}n>n^2>1\) ( vô lý)
\(\Rightarrow n<7\). Thử \(n=1,3,5\) có \(n=1\) thỏa mãn. Khi đó \(n^4+4^n=5\in\mathbb{P}\)
Vậy $n=1$
\(\)
Ta dựa vào nhận xét sau đây: Nếu \(p\) là số nguyên tố và \(p=ab\) với a,b là các số nguyên dương thì a=1 hoặc b=1. Ta có
\(A=n^4+4\cdot2^{4k}=\left(n^2\right)^2+2\cdot n^2\cdot2^{2k+1}+\left(2^{2k+1}\right)^2-2^{2k+2}\cdot n^2\)
\(=\left(n^2+2^{2k+1}\right)^2-\left(2^{k+1}\cdot n\right)^2=\left(n^2+2^{2k+1}-2^{k+1}\cdot n\right)\left(n^2+2^{2k+1}+2^{k+1}n\right).\)
Vì A là số nguyên tố và \(n^2+2^{2k+1}-2^{k+1}\cdot n<\)\(n^2+2^{2k+1}+2^{k+1}\cdot n\). Suy ra \(n^2+2^{2k+1}-2^{k+1}\cdot n=1\). Suy ra \(\left(n-2^k\right)^2+2^{2k}=1\to n=2^k,2^{2k}=1\to k=0,n=1.\) Khi đó A=1+4=5 là số nguyên tố.
Để A = n4 + 42k+1 là số nguyên tố <=> ƯC ( n4 ; 42k+1 ) = 1
=> n4 và 42k+1 chỉ có 1 ước nguyên dương
=> ( 4 + 1 )( 2k + 1 + 1 ) = 1
=> 5.( 2k + 2 ) = 1 => 10k + 10 = 1
=> 10k = - 9 => k = - 9/10
Theo đề , n và k là số tự nhiên
=> n ; k ∈ ∅
\(B=n^5+n^4+1=\left(n^2+n+1\right)\left(n^3-n+1\right)\)
Xét \(n>2\)thì không thỏa mãn vì là tích của 2 số khác 1.
Xét n = 0 hoặc n = 1 hoặc n = 2 là xong