Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là ước chung lớn nhất của n+1 và 3n+4.
Ta có: n+1 chia hết cho d ; 3n+4 chia hết cho d.
=> (3n+4) - (n+1) chia hết cho d
=(n+n+n+4) - (n+1)
=2n+3 chia hết cho d
Ta có: 2n+3 chia hết cho d và n+1 chia hết cho d
=> (2n+3) - (n+1) chia hết cho d
= (n+n+3) - (n+1)
= ( n+2) chia hết cho d
Ta có: (n+2) chia hết cho d và (n+1) chia hết cho d
=> (n+2) - (n+1) chia hết cho d
= 1 chia hết cho d.
=> d=1
===============> n+1 và 3n+4 là hai số nguyên tố cùng nhau.
Cách hồi nãy cũng hơi dài dòng! Còn 1 cách nữa:
Gọi d là ứơc chung của hai số n+1 và 3n+4.
Ta có: 3n+4 chia hết cho d và n+1 cũng chia hết cho d
=> (3n+4) - (n+1) chia hết cho d
= [1.(3n+4)] - [3.(n+1)]
= (3n+4) - (3n+3)
=1 chia hết cho d
=> d=1
===============> n+1 và 3n+4 là hai số nguyên tố cùng nhau
a) Đặt d = (4n + 3, 2n + 3).
Ta có \(2\left(2n+3\right)-\left(4n+3\right)⋮d\Leftrightarrow3⋮d\Leftrightarrow\) d = 1 hoặc d = 3.
Do đó muốn hai số 4n + 3 và 2n + 3 nguyên tố cùng nhau thì d khác 3, tức 4n + 3 không chia hết cho 3 hoặc 2n + 3 không chia hết cho 3
\(\Leftrightarrow n⋮3̸\).
Vậy các số tự nhiên n cần tìm là các số tự nhiên không chia hết cho 3.
ta có : n-1 , n+1 , n+3 , n+5 là chẵn
chẵn thì chia hết cho 2,4,6,8
2*4*6*8 = 384
nên chia hết cho 384
k cho quỳnh nha hoàng dung
a, Vì (a,b)=6 => a=6m,b=6n (m<n;m,n thuộc N; (m,n)=1)
Ta có: a+b=84
=>6m+6n=84
=>6(m+n)=84
=>m+n=14
Ta có bảng:
m | 1 | 3 | 5 |
n | 13 | 11 | 9 |
a | 6 | 18 | 30 |
b | 78 | 66 | 54 |
Vậy các cặp (a;b) là (6;78);(18;66);(30;54)
b, mn + 3m = 5n - 3
=> mn + 3m - 5n = -3
=> m(n + 3) - 5n - 15 = -3 - 15
=> m(n + 3) - 5(n + 3) = -18
=> (m - 5)(n + 3) = -18
=> m - 5 và n + 3 thuộc Ư(-18) = {1;-1;2;-2;3;-3;6;-6;9;-9;18;-18}
Ta có bảng:
m - 5 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 | 9 | -9 | 18 | -18 |
n + 3 | -18 | 18 | -9 | 9 | -6 | 6 | -3 | 3 | -2 | 2 | -1 | 1 |
m | 6 | 4 | 7 | 3 | 8 | 2 | 11 | -1 | 14 | -4 | 23 | -13 |
n | -21 | 15 | -12 | 6 | -9 | 3 | -6 | 0 | -5 | -1 | -4 | -2 |
Mà m,n thuộc N
Vậy các cặp (m;n) là (4;15);(3;6);(2;3)
a: \(\left\{{}\begin{matrix}n+2⋮d\\n+3⋮d\end{matrix}\right.\Leftrightarrow1⋮d\Leftrightarrow d=1\)
Vậy: với mọi số nguyên n thì n+2 và n+3 là hai số nguyên tố cùng nhau