K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2016

Ta thấy :

4n+17 chia hết cho 7 <=> 4n+28-11 chia hết cho 7

Mà 4n + 28 chia hết cho 7 => 11 chia hết cho 7 (loại)

Do đó không có số tự nhiên n thỏa mãn điều kiện bài toán

4 tháng 12 2016

4n+17 chia hết cho 7 <=> 4n+28-11 chia hết cho 7 mà 4n + 28 chia hết cho 7 => 11 chia hết cho 7 (loại)

Do đó không có số tự nhiên n thỏa mãn điều kiện bài toán

17 tháng 12 2022

a: =>4n-2-3 chia hết cho 2n-1

=>\(2n-1\in\left\{1;-1;3;-3\right\}\)

=>\(n\in\left\{1;0;2\right\}\)

b: =>6n-4+11 chia hết cho 3n-2

=>\(3n-2\in\left\{1;-1;11;-11\right\}\)

=>\(n\in\left\{1\right\}\)

19 tháng 12 2018

\(4n+7⋮n+1\)

\(\Rightarrow4n+4+3⋮n+1\)

\(\Rightarrow4\left(n+1\right)+3⋮n+1\)

mà \(4\left(n+1\right)⋮n+1\Rightarrow3⋮n+1\)

\(\Rightarrow N+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Với : \(n+1=1\Rightarrow n=0\left(TM\right)\)

\(n+1=-1\Rightarrow n=-2\left(loại\right)\)

\(n+1=3\Rightarrow n=2\left(TM\right)\)

\(n+1=-3\Rightarrow n=-4\left(loại\right)\)

\(\Rightarrow n\in\left\{0;2\right\}\)

19 tháng 12 2018

4n+7=(4n+4)+3=4(n+1)+3

Vì 4(n+1) chia hết cho n=1 nên 4n+7 chia hết cho n+1 khi và chỉ khi 3 chia hết cho n+1

=> n+1 thuộc tập hợp ước của 3={1;3}( vì n+1 là só tự nhiên)

=> n=0 hoặc n=2

13 tháng 11 2018

a) 3n - 17 chia hết cho n + 2

=> 3n + 6 - 23 chia hết cho n + 2

=> 3( n + 2 ) - 23 chia hết cho n + 1

=> 23 chia hết cho n + 2

=> n + 2 \(\in\)Ư ( 23 ) = { 1 ; 23 }

=> n = { -1 ; 21 }

Do n là số tự nhiên 

=> n = 21

b) 4n - 2 chia hết cho n - 2 

=> 4n - 8 + 6 chia hết cho n - 2

=> 4 ( n - 2 ) + 6  chia hết cho n - 2

=> 6 chia hết cho n -2

=> n - 2 \(\in\)Ư ( 6 ) = { 1 ; 2 ; 3 ; 6 }

=> n = { 3 ; 4 ; 5 ; 8 }

c) 2n + 7 chia hết cho n - 2

=> 2n - 4 + 11 chia hết cho n - 2

=> 2 ( n - 2 ) + 11 chia hết cho n - 2

=> 11 chia hết cho n - 2

=> n - 2 \(\in\)Ư ( 11 ) = { 1 ; 11 }

=> n = { 3 ; 13 }

22 tháng 11 2020

a, \(2n+7⋮n+1\)

\(2\left(n+1\right)+5⋮n+1\)

\(5⋮n+1\)hay \(n+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

n + 11-15-5
n0-24-6

b, \(4n+9⋮2n+3\)

\(2\left(2n+3\right)+3⋮2n+3\)

\(3⋮2n+3\)hay \(2n+3\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

2n + 31-13-3
2n-2-40-6
n-1-20-3
14 tháng 12 2020

4-3=2 yêu anh ko hề sai

5 tháng 11 2023

a) 4n + 7 chia hết cho 2n + 1

⇒ 4n + 2 + 5 chia hết cho 2n + 1

⇒ 2(2n + 1) + 5 chia hết cho 2n + 1

⇒ 5 chia hết cho 2n + 1

⇒ 2n + 1 ∈ Ư(5) (ước dương)

⇒ 2n + 1 ∈ {1; 5}

⇒ n ∈ {0; 2}