Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3n + 14 chia hết cho 3n + 1
3n + 14 =( 3n + 1 ) + 13 chia hết cho 3n + 1
= (3n + 1 ) chia hết cho 3n + 1
Suy ra 13 chia hết cho 3n + 1
Suy ra 3n + 1 thuộc Ư(13)={ 1 ; 13 }
3n + 1 | 1 | 13 |
n | 0 | 4 |
Vậy n thuộc { 0 ; 4 }
n + 11 chia hết cho n + 3
n + 11 = ( n + 3 ) + 8 chia hết cho n + 3
= n + 3 chia hết cho n + 3
Suy ra 8 chia hết cho n + 3
Suy ra n + 3 thuộc Ư(8) = { 1;2;4;8 }
n+ 3 | 1 | 2 | 4 | 8 |
n | không có giá trị nào cho n | không có giá trị nào cho n | 1 | 5 |
Vậy n thuộc {1 ; 5 }
2n + 27 chia hết cho 2n + 1
2n + 27 =( 2n + 1 )+ 26 chia hết cho 2n + 1
= ( 2n + 1 ) chia hết cho 2n + 1
Suy ra 2n + 1 thuộc Ư( 26 ) = { 1 ; 2 ; 13 ; 26 }
2n +1 | 1 | 2 | 13 | 26 |
n | 0 | ko có giá trị cho n | 6 | ko có giá trị cho n |
Vậy n thuộc { 0;6}
Nếu đúng thì mk và kb nha love you thanks mk nhanh nhất đó
\(a,3n-5⋮n+1\)
\(< =>3.\left(n+1\right)-8⋮n+1\)
\(< =>8⋮n+1\)
\(< =>n+1\inƯ\left(8\right)\)
Nên ta có bảng sau :
n+1 | 1 | 8 | -1 | -8 | 2 | 4 | -4 | -2 |
n | 0 | 7 | -2 | -9 | 1 | 3 | -5 | -3 |
Vậy ...
Ta có 3n-5=3(n+1)-8
Để 3n-5 chia hết cho n+1 thì 3(n+1)-8 chia hết cho n+1
Vì 3(n+1) chia hết cho n+1
=> -8 chia hết cho n+1
n nguyên => n+1 nguyên
=> n+1 thuộc Ư (-8)={1;2;4;8}
Nếu n+1=1 => n=0
Nếu n+1=2 => n=1
Nếu n+1=4 => n=3
Nếu n+1=8 => n=7
14+3n Chia hết cho n
=> 14 chia hết cho n
=> N thuộc tập hợp ước của 14
=> n = 1,7,2,14
\(\left(3n+14\right)⋮\left(n+2\right)\\ \Rightarrow\left[\left(3n+6\right)+8\right]⋮\left(n+2\right)\\ \Rightarrow\left[3\left(n+2\right)+8\right]⋮\left(n+2\right)\)
Vì \(3\left(n+2\right)⋮\left(n+2\right)\Rightarrow8⋮\left(n+2\right)\Rightarrow n+2\in8=\left\{\pm1;\pm2;\pm4;\pm8\right\}\Rightarrow n\in\left\{-10;-6;-4;-3;-1;0;2;6\right\}\)
3n + 14 chia hết cho n + 2
⇒ 3n + 6 + 8 chia hết cho n + 2
⇒ 3(n + 2) + 8 chia hết chi n + 2
⇒ 8 chia hết cho n + 2
⇒ n + 2 ∈ Ư(8) = {1; -1; 2; -2; 4; -4; 8; -8}
⇒ n ∈ {-1; -3; 0; -4; 2; -6; 6; -10}
Mà n là số tự nhiên
⇒ n ∈ {0; 2; 6}
\(\left(3n+14\right)=3\left(n+2\right)+8\)
Để \(\left(3n+14\right)⋮\left(n+2\right)\Rightarrow\left(n+2\right)\inƯ\left(8\right)\)
\(\Rightarrow\left(n+2\right)\in\left\{-1;1;-2;2;-4;4;-8;8\right\}\)
\(\Rightarrow n\in\left\{-3;-1;-4;0;-6;2;-10;6\right\}\)
Ta có: \(3n+14⋮3n+1\)
\(\Rightarrow\left(3n+1\right)+13⋮3n+1\)
\(\Rightarrow13⋮3n+1\)(vì \(3n+1⋮3n+1\))
\(\Rightarrow3n+1\inƯ\left(13\right)\)
\(\Rightarrow3n+1\in\left\{1;13\right\}\)
\(\Rightarrow3n\in\left\{0;12\right\}\)
\(\Rightarrow n\in\left\{0;4\right\}\)
Hok tốt nha^^