Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số tự nhiên nhỏ nhất cần tìm là a
Do a chia 29 dư 5; chia 31 dư 28
=> a = 29.m + 5 = 31.n + 28 (m; n ϵ N)(m; n ∈ N)
=> 29 . m = 31 . n + 23
=> 29.m = 29.n + 2.n + 23
=> 29.m - 29.n = 2.n + 23
=> 29.(m - n) = 2.n + 23
=>2 .n + 23 ⋮ 29 => 2 . n + 23 ⋮ 29
Để a nhỏ nhất thì n nhỏ nhất => 2.n + 23 nhỏ nhất
Mà 2.n + 23 là số lẻ => 2.n + 23 = 29
=> 2.n = 29 - 23
=> 2.n = 6
=> n = 6 : 2 = 3
=> a = 31.3 + 28 = 121
Vậy số nhỏ nhất cần tìm là 121.
GIẢI
Gọi số cần tìm là a;
a: 29 dư 5 => a = 29m + 5 (m\(\in\)N)
a: 31 dư 21 => a = 31n + 28 (n\(\in\)N) (1)
Nên a = 29m + 5 = 31n + 28 => 29(m-n) = 2n + 23
Ta thấy 2n + 23 là số lẻ nên 29(m-n) cũng là số lẻ
=> m - n\(\ge\)1
Theo đề bài a nhỏ nhất, từ (1) suy ra n nhỏ nhất
=>2n =29(m-n) - 23 (Nhỏ nhất)
=>(m-n) (Nhỏ nhất)
Do đó m - n = 1 => 2n = 29 - 23 = 6
=> n = 3
Vậy số cần tìm là : a = 31n + 28 = 31.3 + 28 = 121
Gọi số tự nhiên cần tìm là A
Chia cho 29 dư 5 nghĩa là: A = 29p + 5 (p N)
Tương tự: A = 31q + 28 (q N)
Nên: 29p + 5 = 31q + 28 => 29(p - q) = 2q + 23
Ta thấy: 2q + 23 là số lẻ => 29(p - q) cũng là số lẻ => p - q 1
Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)
=> 2q = 29(p - q) - 23 nhỏ nhất
=> p - q nhỏ nhất
Do đó p - q = 1 => 2q = 29 - 23 = 6
=> q = 3
Gọi số tự nhiên cần tìm là \(A\)
Chia cho 29 dư 5 nghĩa là: \(A=29p+5\left(p\in N\right)\)
Tương tự: \(A=31q+28\left(q\in N\right)\)
Nên: \(29p+5=31q+28\) \(\Rightarrow\) \(29-\left(p-q\right)=2q+23\)
Ta thấy: \(2q+23\) là số lẻ \(\Rightarrow\) \(29\left(p-q\right)\) cũng là số lẻ \(\Rightarrow\)\(p-q\ge1\)
Theo giả thiết A nhỏ nhất
\(\Rightarrow\) q nhỏ nhất \(\left(A=31q+28\right)\)
\(\Rightarrow\)\(2q=29\left(p-q\right)-23\) nhỏ nhất
\(\Rightarrow\) \(p-q\) nhỏ nhất
Do đó:
\(p-q=1\) \(\Rightarrow\) \(2q=29-23=6\)
\(\Rightarrow\) \(q=3\)
Vậy số cần tìm là: \(A=31q+28=31.3+28=121\)
biết rắng khi chia số này cho 29 dư 5, còn khi chia cho 31 thì dư 28
Gọi số tự nhiên cần tìm là A
Chia cho 29 dư 5 : A = 29p + 5 ( p ∈ N )
: A = 31q + 28 ( q ∈ N )
Nên: 29p + 5 = 31q + 28=> 29(p - q) = 2q + 23
Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ ==>p – q >=1
Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)
=>2q = 29(p – q) – 23 nhỏ nhất
=> p – q nhỏ nhất
Do đó p – q = 1 => 2q = 29 – 23 = 6
=> q = 3
Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 121
nếu chia hết cho 29 thì chia cho 31 dư 28-5=23
Hiệu của 31 và 29 là 2
Thương của phép chia cho 31 là
(29-23):2=3
2xa+23=29 suy ra a=3
Số cần tìm là
31x3+28=121
Đáp số :121
Tk cho mình nha
Gọi số tự nhiên cần tìm là a
Theo đề ta có : a chia hết cho 29 - 5
a chia hết cho 31 - 28
=> a chia hết cho 24
a chia hết cho 3
Vì a chia hết cho 24 và 3 nên a thuộc BC ( 24 ; 3 )
24 = 23 . 3
3 = 3
BCNN ( 24 ; 3 ) = 23 . 3 = 24
Vậy a = 24
Số tự nhiên nhỏ nhất cần tìm là : 24
24 nha