Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+y}{x^2+y^2}=\frac{7}{25}\)
Do (7;25) = 1
\(\Rightarrow\)Tồn tại số nguyên dương k thỏa mãn tính chất \(\hept{\begin{cases}x+y=7k\\x^2+y^2=25k\end{cases}}\left(1\right)\)
Áp dụng bất đẳng thức Bunyakovsky, ta có:
\(\left(x+y\right)^2\le\left(1^2+1^2\right)\left(x^2+y^2\right)=2\left(x^2+y^2\right)\)
\(\Leftrightarrow49k^2=50k\)
\(\Leftrightarrow k\le\frac{50}{49}\)
Mà k nguyên dương \(\Rightarrow k=1\)
Thay k = 1 vào hệ phương trình (1), ta có:
\(\hept{\begin{cases}x+y=7\\x^2+y^2=25\end{cases}}\Leftrightarrow\hept{\begin{cases}y=7-x\\x^2+\left(7-x\right)^2=25\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=7-x\\x^2+49-14x+x^2=25\end{cases}\Leftrightarrow}\hept{\begin{cases}y=7-x\\2x^2-14x+24=0\end{cases}}\)
Đến đây, giải phương trình bậc hai theo x (phương trình bên dưới) bằng cách phân tích đa thức thành nhân tử tìm x, sau đó thay x vào biểu thức bên trên tìm y. Đáp án là 2 cặp nghiệm (4;3);(3;4).
Bài 5.5:
\(\left(2x-3\right)\left(x+1\right)+\left(4x^3-6x^2-6x\right):\left(-2x\right)=18\)
\(\Leftrightarrow\left(2x^2+2x-3x-3\right)+2x\cdot\left(2x^2-3x-3\right):\left(-2x\right)=18\)
\(\Leftrightarrow2x^2-x-3-2x^2+3x+3=18\)
\(\Leftrightarrow2x=18\)
\(\Leftrightarrow x=\dfrac{18}{2}\)
\(\Leftrightarrow x=9\)
Ta có : x chia cho 2 dư 1
x chia cho 3 dư 2
x chia cho 4 dư 3
x chia cho 5 dư 4 \(\Rightarrow\)x+1 chia hết cho 2;3;4;5;6;7;8;9\(\Rightarrow\)x +1 = BCNN(2;3;4;5;6;7;8;9) = 2520 \(\Rightarrow\)x=2519(nếu x nhỏ nhất)
x chia cho 6 dư 5
x chia cho 7 dư 6
x chia cho 8 dư 7
x chia cho 9 dư 8
Còn nếu x không nhỏ nhất thì nhân lần lượt với các số tự nhiên từ 0;1;2;3...
Gọi x là số cần tìm
x chia 2 dư 1 chia 3 dư 2 chia 4 dư 3 ... chia 9 dư 8
\(\Rightarrow x+1⋮2;3;4;5;6;7;8;9\)
x có dạng \(x+kBCNN\left(2;3;4;5;6;7;8;9\right);k\in N\)
\(2=2\)
\(3=3\)
\(4=2^2\)
\(5=5\)
\(6=2\cdot3\)
\(7=7\)
\(8=2^3\)
\(9=3^2\)
\(BCNN\left(2;3;4;5;6;7;8;9\right)=2^3\cdot3^2\cdot5\cdot7=2520\)
\(x+1=2520\)
\(x=2519\)
Vậy \(x=\left\{2519;2519+1\cdot2520;2519+2\cdot2520;...\right\}\)
\(x=\left\{2519;5039;7559;...\right\}\)
x : 7 dư 6 => x = 7k + 6
Ta có :
\(x^2=\left(7k+6\right)^2=49k^2+36\)
Vì 49k2 chia hết cho 7 ; 36 chia 7 dư 1 nên 49k2 + 36 chia 7 dư 1
Vậy x2 : 7 dư 1
Bài 1:
Để \(\dfrac{n^2+7}{n+7}\) là số tự nhiên thì \(\left\{{}\begin{matrix}n^2+7⋮n+7\\n>-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n^2-49+56⋮n+7\\n>-7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}n+7\in\left\{1;-1;2;-2;4;-4;7;-7;8;-8;14;-14;28;-28;56;-56\right\}\\n>-7\end{matrix}\right.\)
\(\Leftrightarrow n\in\left\{-6;-5;-3;0;1;7;21;49\right\}\)
Điều kiện: \(x\ge74\)
\(GT\Rightarrow\left\{{}\begin{matrix}x+15=m^2\left(m\in N\right)\\x-74=n^2\left(n\in N\right)\end{matrix}\right.\)
\(\Rightarrow m^2-15=n^2+74\)
\(\Leftrightarrow m^2-n^2=89\Leftrightarrow\left(m+n\right)\left(m-n\right)=89\)
Do \(m,n\in N\) và \(89=1\cdot89\) nên ta có:
Trường hợp 1: \(\left\{{}\begin{matrix}m+n=1\\m-n=89\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m=45\\n=-44\end{matrix}\right.\) (loại).
Trường hợp 2: \(\left\{{}\begin{matrix}m+n=89\\m-n=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=45\\n=44\end{matrix}\right.\) (nhận).
\(\Rightarrow x=m^2-15=45^2-15=2010\left(TM\right)\)
Vậy: \(x=2010\).