K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2017

1.

Gọi số cần tìm là a

theo bài ra ta có: a-7 chia hết 11

 a-7 chia hết 13

a-7 chia hết 17 và a là số lớn nhất có 4 chữ số

=> (a-7) thuộc BC (11,13,17) và a lớn nhất có 4 chữ số

BCNN (11,13,17)=2431

(a-7) thuộc BC (11,13,17)= B(2431)= (0; 2431;4862; 7298; 9724; 12155;....)

=>a thuộc (7; 2438; 4869; 7305; 9731; 12163;...)

mà a là số lớn nhất có 4 chữ số

nên a=9731

Vậy số cần tìm là 9731

19 tháng 4 2017

goi so can tim la a

co: a chia cho 8 du 7 => a=8k+7

a chia cho 31 dư 28=> a=31q+28

=>8k+7=31q+28

=>8k=31q+28-7

=>8k=31k+21=32q+24-(q+3)

=>q+3 chia het cho 8

=>q+3=8b

=>q=8b-3

=>a=31.(8q-3)+28=248q-65

mà 100<a<999

=>100<248q-65<999

=>165<248q<1064

=>1 nhỏ bằng q nhỏ bằng 4

=> q thuộc tập 1,2,3,4

=> a thuộc tập 183,431,679,927

mà a lớn nhất có 3 c/s nên a=927

927 nhé

tk cho mình đi bạn

NM
8 tháng 1 2021

câu 1. \(7^{2n-4}=1\Leftrightarrow2n-4=0\Leftrightarrow n=2\)

câu .2 

a. rõ ràng 2x-2 là số chẵn lớn hơn hoạc bằng -2 đồng thời nó là ước của 24 nên ta có

\(2x-2\in\left\{-2;2;4;6;12;24\right\}\Rightarrow x\in\left\{0,2,3,4,7,13\right\}\)

b. rõ ràng 2x+1 là số chẵn lớn hơn hoạc bằng 1 đồng thời nó là ước của 7 nên ta có

\(2x+1\in\left\{1,7\right\}\Rightarrow x\in\left\{0,3\right\}\)

c. ta có \(a+b=a-3+b-4+7\)

ta có a-3 và b-4 chia hết cho 5  còn 7 chia 5 dư 2

vậy a+b chia 5 dư 2..

11 tháng 2 2016

câu a là 680 nha duyệt đi

11 tháng 2 2016

bai toan nay kho 

23 tháng 8 2019

anj vaof caau hoir tuwowng tuwj nha

23 tháng 8 2019

tự dịch

30 tháng 11 2017

Gọi số cần tìm là a 
Ta có ; 
a chia cho 25 dư 5 
a chia cho 28 dư 8 
a chia cho 35 dư 15 
\(\Rightarrow\) a + 20 thì chia hết cho 25 ; 28 ; 35.
\(\Rightarrow\) a + 20 \(\in\) BC(25,28,35) 
\(\Rightarrow\) BCNN(25,28,35) = 700 
\(\Rightarrow\) BC(25,28,35) = {0 ; 700 ; 1400 ; 2100 ;...} mà số cần tìm có 3 chữ số.
\(\Rightarrow\) a + 20 = 700 
\(\Rightarrow\) a = 700 - 20 = 680 
Vậy số cần tìm là 680.

30 tháng 11 2017

gọi số đó là a(a thuộc n*)

vì a/25,28,35 có lần lượt dư là 5,8,15

Suy ra a+20 chi hết cho 25,28,35

Suy ra a+20 thuộc BC(25,28,35)

           ta có 25=5^2

                   28=7*2^2

                  35=7*5

Suy ra bcnn(25,28,35)=2^2*5^2*7=700

 Suy ra bc(25,28,35)=B(700)={0;700;1400;.....}

mà a có 3 chữ số suy ra a=700 

vây a = 700

29 tháng 8 2021

Bài 1: 
Do n chia 3 dư 2 nên n = 3a + 2 (a ∈ N).
Ta có 2
​n - 1 = 2(3a + 2) - 1 = 2.3a + 3 = 3(2a + 1) nên 2n - 1 ​chia hết cho 3 (1)
Tương tự, ta có:
n = 5b + 3 (b ∈ N); 2n - 1 = 2(5b + 3) - 1 = 2.5b + 5 = 5(2b + 1) nên 2n - 1 chia hết cho 5 (2)
n = 7c + 4 (c ∈ N); 2n - 1 = 2(7c + 4) - 1 = 2.7c + 7 = 7(2c + 1) nên 2n - 1 chia hết cho 7 (3)
Từ (1), (2), (3) và yêu cầu tìm số n nhỏ nhất, ta có 2n - 1 là BCNN(3, 5, 7). Do 3, 5, 7 là các số nguyên tố cùng nhau nên BCNN(3, 5, 7) = 3.5.7 = 105. Vậy 2n - 1 = 105 => 2n = 105 + 1 = 106 => n = 106:2 = 53

Bài 2:
Do n chia 8 dư 7 nên n = 8a + 7 (a ∈ N).
Ta có n + 65 = 8a + 7 + 65 = 8a + 72 = 8(a + 9)
 ​chia hết cho 8 (1)
Tương tự, n chia 31 dư 28 nên n = 31b + 28 (b ∈ N)
Ta có n + 65 = 31b + 28 + 65 = 31b + 93 = 31(b + 3) ​chia hết cho 32 (2)
Từ (1) và (2) ta có n + 65 là UC(8, 31). Do 8 và 31 là các số nguyên tố cùng nhau nên UC(8, 31) có dạng 8.31m =  248m (m ∈ N).
Như vậy: n + 65 = 248m, (m ∈ N) => n = 248m - 65, (m ∈ N) (3)
Theo đề bài, ta cần tìm n là số lớn nhất có ba chữ số thỏa mãn điều kiện (3)
Xét m = 5, ta có n = 248.5 - 65 = 1240 - 65 = 1175 không đáp ứng điều kiện n có ba chữ số
Xét m = 4, ta có n = 248.4 - 65 = 992 - 65 = 927, đáp ứng điều kiện n có ba chữ số
Vậy n = 927 là số lớn nhất có ba chữ số thỏa mãn điều kiện của đề bài

29 tháng 8 2021

Bài 1:
Do n chia 3 dư 2 nên n = 3a + 2 (a ∈ N).

Ta có 2n - 1 = 2(3a + 2) - 1 = 2.3a + 3 = 3(2a + 1) nên 2n - 1 chia hết cho 3 (1)
Tương tự, ta có:
n = 5b + 3 (b ∈ N); 2n - 1 = 2(5b + 3) - 1 = 2.5b + 5 = 5(2b + 1) nên 2n - 1 chia hết cho 5 (2)
n = 7c + 4 (c ∈ N); 2n - 1 = 2(7c + 4) - 1 = 2.7c + 7 = 7(2c + 1) nên 2n - 1 chia hết cho 7 (3)
Từ (1), (2), (3) và yêu cầu tìm số n nhỏ nhất, ta có 2n - 1 là BCNN(3, 5, 7). Do 3, 5, 7 là các số nguyên tố cùng nhau nên BCNN(3, 5, 7) = 3.5.7 = 105. Vậy 2n - 1 = 105 => 2n = 105 + 1 = 106 => n = 106:2 = 53
Vậy n = 53 là số tự nhiên nhỏ nhất thỏa điều kiện của đề bài

Bài 2: 

Do n chia 8 dư 7 nên n = 8a + 7 (a ∈ N).

Ta có n + 65 = 8a + 7 + 65 = 8a + 72 = 8(a + 9) chia hết cho 8 (1)
Tương tự, n chia 31 dư 28 nên n = 31b + 28 (b ∈ N)
Ta có n + 65 = 31b + 28 + 65 = 31b + 93 = 31(b + 3) chia hết cho 32 (2)
Từ (1) và (2) ta có n + 65 là UC(8, 31). Do 8 và 31 là các số nguyên tố cùng nhau nên UC(8, 31) có dạng 8.31m =  248m (m ∈ N).
Như vậy: n + 65 = 248m, (m ∈ N) => n = 248m - 65, (m ∈ N) (3)
Theo đề bài, ta cần tìm n là số lớn nhất có ba chữ số thỏa mãn điều kiện (3)
Xét m = 5, ta có n = 248.5 - 65 = 1240 - 65 = 1175 không đáp ứng điều kiện n có ba chữ số
Xét m = 4, ta có n = 248.4 - 65 = 992 - 65 = 927, đáp ứng điều kiện n có ba chữ số
Vậy n = 927 là số lớn nhất có ba chữ số thỏa mãn điều kiện của đề bài

Bài 1: Tìm số tự nhiên nhỏ nhất khi chia cho 6, 7, 9 được số dư theo thứ tự 2, 3,5.Bài 2: Số học sinh khối 6 của một trường trong khoảng từ 200 và 400, khi xếp hàng 12, 15, 18 đều thừa 5 học sinh. Tính số học sinh đó.Bài 3: Tổng số học sinh khối 6 của một trường có khoảng từ 235 đến 250 em học sinh, khi chia cho 3 dư 2, chia cho 4 dư 3, chia cho 5 dư 4, chia cho 6 dư 5, chia cho 10 dư 9. Tìm số học...
Đọc tiếp

Bài 1: Tìm số tự nhiên nhỏ nhất khi chia cho 6, 7, 9 được số dư theo thứ tự 2, 3,5.

Bài 2: Số học sinh khối 6 của một trường trong khoảng từ 200 và 400, khi xếp hàng 12, 15, 18 đều thừa 5 học sinh. Tính số học sinh đó.

Bài 3: Tổng số học sinh khối 6 của một trường có khoảng từ 235 đến 250 em học sinh, khi chia cho 3 dư 2, chia cho 4 dư 3, chia cho 5 dư 4, chia cho 6 dư 5, chia cho 10 dư 9. Tìm số học sinh của khối 6.

Bài 4: Một số tự nhiên chia cho 7 thì dư 5, chia cho 13 thì dư 4. Nếu đem số đó chia cho 91 thì dư bao nhiêu?

Bài 5: Một số tự nhiên a khi chia cho 7 dư 4, chia cho 9 dư 6. Tìm số dư khi chia a cho 63.

Bài 6: Tìm số tự nhiên n lớn nhất có ba chữ số, sao cho n chia cho 15 và 35 có số dư lần lượt là 9 và 29.

Bài 7: Tìm số tự nhiên nhỏ nhất có ba chữ số chia cho 18; 30; 45 có số dư lần lượt là 8; 20; 35.

0