K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2018

a/\(\sqrt{x}=7\)

\(\Leftrightarrow x=49\)

b/\(\Leftrightarrow x< 4\)(do x>0)

\(\Rightarrow x\varepsilon\left\{0;1;2;3\right\}\)

c/\(2x< 16\)

\(\Leftrightarrow x< 8\)

\(\Leftrightarrow x\varepsilon\left\{1;2;3;4;5;6;7\right\}\)

5 tháng 6 2018

a) \(2\sqrt{x}=14\Leftrightarrow\sqrt{x}=7\)

\(\Leftrightarrow x=7^2\Leftrightarrow x=49\)

b) \(\sqrt{x}< \sqrt{2}\Leftrightarrow x< 2\)

c) \(\sqrt{2x}< 4\)

Vì \(4=\sqrt{16}\text{ nên }\sqrt{2x}< 4\text{ có nghĩa là }\sqrt{2x}< 16\)

\(\Leftrightarrow2x< 16\)

\(\Leftrightarrow x< 8\left(x\ge0\right)\)

7 tháng 9 2021

a, \(\sqrt{3x}< 6\Leftrightarrow3x< 36\Leftrightarrow x< 12\)

\(\Rightarrow0\le x< 12\)

b, \(\sqrt{2x}>1\Leftrightarrow2x>1\Leftrightarrow x>\dfrac{1}{2}\)

7 tháng 9 2021

thằng này lm j đây?

12 tháng 7 2021

a) \(\sqrt{x}< \sqrt{3}\Rightarrow x< 3\Rightarrow0\le x< 3\)

b) \(\sqrt{3x}< 6\Rightarrow3x< 36\Rightarrow x< 12\Rightarrow0\le x< 12\)

c) \(\dfrac{1}{2}\sqrt{5x}< 10\Rightarrow\sqrt{5x}< 20\Rightarrow5x< 400\Rightarrow x< 80\Rightarrow0\le x< 80\)

a) \(0\le x< 3\)

b) \(0\le x< 12\)

13 tháng 4 2021

Em mới lớp 7 nên em chỉ làm những câu em biết thôi nhé:

\(a,\sqrt{x}=15\)

\(\Rightarrow x=15^2\)

\(\Rightarrow x=225\)

\(b,2\sqrt{x}=14\)

\(\sqrt{x}=14:2\)

\(\sqrt{x}=7\)

\(x=7^2\)

\(x=49\)

\(c,\sqrt{x}< \sqrt{2}\)

\(\Rightarrow x< 2\)

Còn ý d em không biết làm ạ ! 

\(a)\sqrt{x}=15\)

\(x\ge0\) nên bình phương hai vế ta được:

\(x=15^2\Leftrightarrow x=225\)

Vậy \(x=225\)

\(b)2\sqrt{x}=14\Leftrightarrow\sqrt{x}=7\)

Vì  \(x\ge0\) nên bình phương hai vế ta được:

\(x=7^2\Leftrightarrow x=49\)

Vậy \(x=49\)

\(c)\sqrt{x}< \sqrt{2}\)

\(x\ge0\) nên bình phương hai vế ta được: \(x< 2\)

Vậy \(0\le x\le2\)

\(d)\sqrt{2x}< 4\)

Vì \(x\ge0\)nên bình phương hai vế ta được:

\(2x< 16\Leftrightarrow x< 8\)

Vậy \(0\le x< 8\)

26 tháng 6 2021

`a)sqrt{x^2-2x+1}=2`

`<=>sqrt{(x-1)^2}=2`

`<=>|x-1|=2`

`**x-1=2<=>x=3`

`**x-1=-1<=>x=-1`.

Vậy `S={3,-1}`

`b)sqrt{x^2-1}=x`

Điều kiện:\(\begin{cases}x^2-1 \ge 0\\x \ge 0\\\end{cases}\)

`<=>` \(\begin{cases}x^2 \ge 1\\x \ge 0\\\end{cases}\)

`<=>x>=1`

`pt<=>x^2-1=x^2`

`<=>-1=0` vô lý

Vậy pt vô nghiệm

`c)sqrt{4x-20}+3sqrt{(x-5)/9}-1/3sqrt{9x-45}=4(x>=5)`

`pt<=>sqrt{4(x-5)}+sqrt{9*(x-5)/9}-sqrt{(9x-45)*1/9}=4`

`<=>2sqrt{x-5}+sqrt{x-5}-sqrt{x-5}=4`

`<=>2sqrt{x-5}=4`

`<=>sqrt{x-5}=2`

`<=>x-5=4`

`<=>x=9(tmđk)`

Vậy `S={9}.`

`d)x-5sqrt{x-2}=-2(x>=2)`

`<=>x-2-5sqrt{x-2}+4=0`

Đặt `a=sqrt{x-2}`

`pt<=>a^2-5a+4=0`

`<=>a_1=1,a_2=4`

`<=>sqrt{x-2}=1,sqrt{x-2}=4`

`<=>x_1=3,x_2=18`,

`e)2x-3sqrt{2x-1}-5=0`

`<=>2x-1-3sqrt{2x-1}-4=0`

Đặt `a=sqrt{2x-1}(a>=0)`

`pt<=>a^2-3a-4=0`

`a-b+c=0`

`<=>a_1=-1(l),a_2=4(tm)`

`<=>sqrt{2x-1}=4`

`<=>2x-1=16`

`<=>x=17/2(tm)`

Vậy `S={17/2}`

AH
Akai Haruma
Giáo viên
26 tháng 6 2021

d.

ĐKXĐ: $x\geq 2$. Đặt $\sqrt{x-2}=a(a\geq 0)$ thì pt trở thành:

$a^2+2-5a=-2$

$\Leftrightarrow a^2-5a+4=0$

$\Leftrightarrow (a-1)(a-4)=0$

$\Rightarrow a=1$ hoặc $a=4$

$\Leftrightarrow \sqrt{x-2}=1$ hoặc $\sqrt{x-2}=4$

$\Leftrightarrow x=3$ hoặc $x=18$ (đều thỏa mãn)

e. ĐKXĐ: $x\geq \frac{1}{2}$

Đặt $\sqrt{2x-1}=a(a\geq 0)$ thì pt trở thành:

$a^2+1-3a-5=0$

$\Leftrightarrow a^2-3a-4=0$

$\Leftrightarrow (a+1)(a-4)=0$

Vì $a\geq 0$ nên $a=4$

$\Leftrightarrow \sqrt{2x-1}=4$

$\Leftrightarrow x=\frac{17}{2}$

26 tháng 6 2021

`a)sqrt{9x^2}=6`

`<=>|3x|=6`

`<=>|x|=2`

`<=>x=+-2`

`b)sqrt{(x-2)^2}=5`

`<=>|x-2|=5`

`**x-2=5`

`<=>x=7`

`**x-2=-5`

`<=>x=-3`

`c)sqrt{x^2-6x+9}=3`

`<=>\sqrt{(x-3)^2}=3`

`<=>|x-3|=3`

`**x-3=3`

`<=>x=6`

`**x-3=-3`

`<=>x=0`

`d)sqrt{x^2+4x+4}-2x=3`

`<=>sqrt{(x+2)^2}=3+2x`

`<=>|x+2|=2x+3(x>=-3/2)`

`**x+2=2x+3`

`<=>x=-1(tm)`

`**x+2=-2x-3`

`<=>3x=-5`

`<=>x=-5/3(l)`

Sử dụng công thức:`sqrtA^2=|A|`

26 tháng 6 2021

ĐKXĐ : \(x\in R\)

a, \(\sqrt{9x^2}=\left|3x\right|=6\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=6\\3x=-6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

Vậy ..

b, \(\sqrt{\left(x-2\right)^2}=\left|x-2\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=5\\x-2=-5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-3\end{matrix}\right.\)

Vậy ...

c, \(\sqrt{x^2-6x+9}=\sqrt{\left(x-3\right)^2}=\left|x-3\right|=3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=3\\x-3=-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=0\end{matrix}\right.\)

Vậy ..

d, \(\sqrt{x^2+4x+4}-2x=\sqrt{\left(x+2\right)^2}-2x=\left|x+2\right|-2x=3\)

\(\Leftrightarrow\left|x+2\right|=2x+3\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x+2=2x+3\\x+2=-2x-3\end{matrix}\right.\\2x+3\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{3}{2}\\\left[{}\begin{matrix}x=-1\left(TM\right)\\x=-\dfrac{5}{3}\left(L\right)\end{matrix}\right.\end{matrix}\right.\)

Vậy ..

3 tháng 4 2017

Với câu c, Thiên Anh nên thêm điều kiện để phần kết luận là: \(0\le x< 2.\)

1 tháng 4 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

9 tháng 10 2021

\(a,ĐK:x\ge3\\ PT\Leftrightarrow x-3=5\Leftrightarrow x=8\left(tm\right)\\ b,ĐK:x\ge\dfrac{1}{2}\\ PT\Leftrightarrow2x-1=3\Leftrightarrow x=2\left(tm\right)\\ c,Vì.\sqrt{1-x}\ge0>-1.nên.pt.vô.nghiệm\\ d,PT\Leftrightarrow\left|x-1\right|=1\Leftrightarrow\left[{}\begin{matrix}x-1=1\\1-x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)

9 tháng 10 2021

a) \(\sqrt{x-3}=5\) (1)

ĐKXĐ: \(x\ge3\)

\(\left(1\right)\Leftrightarrow x-3=25\)

\(\Leftrightarrow x=28\) (nhận)

Vậy \(x=28\)

b) \(\sqrt{2x-1}=\sqrt{3}\)   (2)

ĐKXĐ: \(x\ge\dfrac{1}{2}\)

\(\left(2\right)\Leftrightarrow2x-1=3\)

\(\Leftrightarrow2x=4\)

\(\Leftrightarrow x=2\) (nhận)

Vậy \(x=2\)

c) \(\sqrt{1-x}=-1\)

Không tìm được \(x\)\(\sqrt{1-x}\ge0\) (với mọi \(x\le1\))

d) \(\sqrt{\left(x-1\right)^2}=1\)   (3)

ĐKXĐ: Với mọi \(x\in R\)

\(\left(3\right)\Leftrightarrow\left|x-1\right|=1\)

\(\Leftrightarrow x-1=1\) (khi \(x\ge1\)) hoặc \(1-x=1\) (khi \(x< 1\))

* \(x-1=1\)

\(\Leftrightarrow x=2\) (nhận)

* \(1-x=1\)

\(\Leftrightarrow x=0\) (nhận)

Vậy \(x=0;x=2\)

4 tháng 10 2021

c) \(\sqrt{\left(x-2\right)^2}=10\)

\(x-2=10\)

\(x=12\)

d) \(\sqrt{9x^2-6x+1}=15\)

\(\sqrt{\left(3x\right)^2-2.3x.1+1^2}=15\)

\(\sqrt{\left(3x-1\right)^2}=15\)

\(3x-1=15\)

\(3x=16\)

\(x=\dfrac{16}{3}\)

4 tháng 10 2021

a) \(đk:x\ge0\)

\(pt\Leftrightarrow3\sqrt{2x}+4\sqrt{2x}-3\sqrt{2x}=12\)

\(\Leftrightarrow4\sqrt{2x}=12\Leftrightarrow\sqrt{2x}=3\Leftrightarrow2x=9\Leftrightarrow x=\dfrac{9}{2}\left(tm\right)\)

b) \(đk:x\ge-2\)

\(pt\Leftrightarrow3\sqrt{x+2}+12\sqrt{x+2}-2\sqrt{x+2}=26\)

\(\Leftrightarrow13\sqrt{x+2}=26\)

\(\Leftrightarrow\sqrt{x+2}=2\Leftrightarrow x+2=4\Leftrightarrow x=2\left(tm\right)\)

c) \(pt\Leftrightarrow\left|x-2\right|=10\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=10\\x-2=-10\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=12\\x=-8\end{matrix}\right.\)

d) \(pt\Leftrightarrow\sqrt{\left(3x-1\right)^2}=15\)

\(\Leftrightarrow\left|3x-1\right|=15\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=15\\3x-1=-15\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{16}{3}\\x=-\dfrac{14}{3}\end{matrix}\right.\)

e) \(đk:x\ge\dfrac{8}{3}\)

\(pt\Leftrightarrow3x+4=9x^2-48x+64\)

\(\Leftrightarrow9x^2-51x+60=0\)

\(\Leftrightarrow3\left(x-4\right)\left(5x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=\dfrac{5}{3}\left(ktm\right)\end{matrix}\right.\)

26 tháng 10 2021

a: \(\Leftrightarrow\left|2x-3\right|=7\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=7\\2x-3=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

26 tháng 10 2021

a, \(\sqrt{\left(2x-3\right)^2}=7\\ \Rightarrow\left|2x-3\right|=7\\ \Rightarrow\left[{}\begin{matrix}2x-3=7\\2x-3=-7\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

c, \(\sqrt{x^2-9}-3\sqrt{x-3}=0\\ \Rightarrow\sqrt{x-3}\sqrt{x+3}-3\sqrt{x-3}=0\\ \Rightarrow\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x+3}-3=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x-3=0\\x+3=9\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=6\left(tm\right)\end{matrix}\right.\)