Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A=2^8 + 2^11 + 2^n = (2^4)^2 . (1 + 8 + 2^n-8)
=(2^4)^2.(9+2^n-8)
Đặt k^2 =9 + 2^n-8
=>k^2 - 3^2 = 2^n-8
=>(k-3)(k+3) = 2^n-8(*)
Xét hiệu (k-3)-(k+3)=6
=>k-3 và k+3 là các luy thùa và có hiệu là6
=>k+3 = 8 và k-3 =2
=>k=5
thay vào (*) ta có 2.3=2^n-8
=>n=12
thử lại tacó 2^8 + 2^11 + 2^12 = 80^2 đúng
Toán lớp 6Phân tích thành thừa số nguyên tố
Đinh Tuấn Việt 20/05/2015 lúc 22:51
Theo đề bài ta có:
a = p1m . p2n $\Rightarrow$⇒ a3 = p13m . p23n.
Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)
$\Rightarrow$⇒ m = 1 ; n = 3 hoặc m = 3 ; n = 1
Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)
-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)
-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)
Vậy a2 có 21 ước số.
Đúng 4 Yêu Chi Pu đã chọn câu trả lời này.
nguyên 24/05/2015 lúc 16:50
Theo đề bài ta có:
a = p1m . p2n $$
a3 = p13m . p23n.
Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)
$$
m = 1 ; n = 3 hoặc m = 3 ; n = 1
Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)
-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)
-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)
Vậy a2 có 21 ước số.
Đúng 0
Captain America
Đặt \(2^4+2^7+2^n=a^2\left(a\in N\right)\)
\(\Leftrightarrow\left(2^4+2^7\right)+2^n=a^2\)
\(\Leftrightarrow2^4.\left(1+2^3\right)+2^n=a^2\)
\(\Leftrightarrow2^4.3^2+2^n=a^2\)
\(\Leftrightarrow\left(2^2.3\right)^2+2^n=a^2\)
\(\Leftrightarrow12^2+2^n=a^2\)
\(\Leftrightarrow2^n=a^2-12^2\)
\(\Leftrightarrow2^n=\left(a-12\right).\left(a+12\right)\)
Đặt \(a-12=2^q\) ( * ) ; \(a+12=2^p\) ( ** )
Giả sử p > q ; p , q \(\in\) N
Lấy ( ** ) - ( * ) vế với vế ta được : \(24=2^p-2^q\)
\(2^3.3=2^q.\left(2^{p-q}-1\right)\)
\(\Rightarrow\hept{\begin{cases}2^3=2^q\\3=2^{p-q}-1\end{cases}}\) \(\Rightarrow\hept{\begin{cases}q=3\\2^2=2^{p-q}\end{cases}}\) \(\Rightarrow\hept{\begin{cases}q=3\\p-q=2\end{cases}}\) \(\hept{\begin{cases}q=3\\p=5\end{cases}}\)
\(\Rightarrow n=p+q=3+5=8\)
Với \(n=8\) thì \(2^4+2^7+2^n=2^4+2^7+2^8=16+128+256=400=20^2\) là số chính phương thỏa mãn yêu cầu bài toán
Vậy \(n=8\)