Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Ký hiệu (abcd) là số tự nhiên có 4 chữ số.
(abcd) + (abc) + (ab) + (a) = 1111.a + 111.b + 11.c + d
Vậy 1111.a + 111.b + 11.c + d = 4321
+ Nếu a < 3 => 111.b + 11.c + d > 2098 (vô lý vì b, c, d < 10)
+ Nếu a > 3 => vế trái > 4321
Vậy a = 3 => 111.b + 11.c + d = 988
+ Nếu b < 8 => 11.c + d > 210 (vô lý vì c, d < 10)
+ Nếu b > 8 => vế trái > 988
Vậy b = 8 => 11.c + d = 100
+ Nếu c < 9 => d > 11 (vô lý)
Vậy c = 9; d = 1
=> (abcd) = 3891
dat s =1+2+.......+n
=>s=n(n+1).............+2+1
=>2s=n+(n-1) +....+2+1
=>2s=n(n+1)
=>s=n(n+1)/2
=>aaa=n(n+1)/2
=>2aaa=n(n+1)
mk lam
\(1+2+...+n=\overline{aaa}\)
\(\Rightarrow\dfrac{n\left(n+1\right)}{2}=\overline{aaa}\)
\(\Rightarrow n\left(n+1\right)=2.\overline{aaa}\)
Do \(2.\overline{aaa}< 2000\Rightarrow n\left(n+1\right)< 2000\Rightarrow n^2< 2000\)
\(\Rightarrow n< 45\)
Lại có: \(n\left(n+1\right)=2.37.3.a⋮37\)
\(\Rightarrow n\left(n+1\right)⋮37\)
Do \(37\in P\)
\(\Rightarrow\left[{}\begin{matrix}n⋮37\\n+1⋮37\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}n=37\\n+1=37\end{matrix}\right.\) ( do n < 45 )
\(\Rightarrow\left[{}\begin{matrix}n=37\\n=36\end{matrix}\right.\)
Thử lại: n = 36, a = 6
Vậy...
Từ 1; 2; 3;...;n có n số hạng.
=> 1+2+3+...+n
Mà theo bài ra ta có 1+2+3+...+n=
=> a.111 =a.3.37
=> n(n+1)= 2.3.37.a
Vì tích n(n+1) chia hết cho số nguyên 37 nên n hoặc n+1 chia hết cho 37
Vì số có 3 chữ số => n+1<74n = 37 hoặc n+1= 37
+ Với n+37 thì( không thỏa mãn)
+ Với n+1=37 thì( thỏa mãn)
Vậy n=36 và a=6
=> 1+2+3+...+36=666
Chúc bạn học tốt nhoa...!
1.n—3 chia hết cho n—1
==> n—1–2 chia hết chi n—1
Vì n—1 chia hết cho n—1
Nên 2 chia hết cho n—1
==> n—1 € Ư(2)
n—1 € {1;—1;2;—2}
Ta có:
TH1: n—1=1
n=1+1
n=2
TH2: n—1=—1
n=—1+1
n=0
TH3: n—1=2
n=2+1
n=3
TH 4: n—1=—2
n=—2+1
n=—1
Vậy n€{2;0;3;—1}
Nếu bạn chưa học số âm thì không cần viết đâu
1 + 2 + 3 + ... + n = n x (n + 1) : 2 ; aaa = a x 111 = a x 3 x 37.
Vậy ta có : n x (n + 1) : 2 = a x 3 x 37 hay n x (n + 1) = a x 3 x 2 x 37 = a x 6 x 37. Ta thấy vế trái là tích của hai số tự nhiên liên tiếp nên suy ra a x 6 = 36 hoặc 38. Từ đây ta tìm được a = 6, thay vào ta có : n x (n + 1) = 36 x 37. Vậy n = 36.