Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giả sở x,y là các số nguyên thỏa mãn pt : \(5x+3y=15\) (1)
Ta thấy 15 và 3y đều chia hết cho 3 nên 5x cũng chia hết cho 3. do đó x chia hết cho 3 (vì 5 và 3 là nguyên tố cùng nhau)
đặt : \(x=3t\) (t là số nguyên) , Thay vào (1) ta được : \(5\times3t+3y=15\) \(\Leftrightarrow5t+y=5\) \(\Leftrightarrow y=5-5t\) do đó \(\begin{cases}x=3t\\y=5-5t\end{cases}\) với t ϵ Z
Đảo lại thay các biểu thức của x và y vào (1) được nghiệm đúng, vậy (1) có vô số (x ; y) nguyên được biểu thị bởi công thức : \(\begin{cases}x=3t\\y=5-5t\end{cases}\) với ( t ϵ Z )
Ta có 5x+3y=15
5x=15-3y
Vì 15\(⋮\)3;3y\(⋮\)3=>5x\(⋮\)3
Mà ƯCLN(5;3)=1 Nên x\(⋮\)3
=>x có dạng 3k(kEN)
=>5*3k+3y=15
=>15k+3y=15
=>3y=15-15k
=>3y=15*(1-k)
=>y=15*(1-k):3
=>y=5*(1-k)
=>y=5-5k
Để y EN thì 5-5k phải EN
=>5k<10
=>k<2
=>k=1 hoặc k=0
Nếu k=1=>x=3*1=>x=3
y=5-5*1
y=0
Nếu k=0=>x=3*0=>x=0
y=5-5*0
y=5
Vậy x=5 thì y=0
x=0 thì y=5
4:
(x+1)(y-2)=5
=>\(\left(x+1;y-2\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;7\right);\left(4;3\right);\left(-2;-3\right);\left(-6;1\right)\right\}\)
11=1x11=11x1=-1x-11=-11x-1
TH1:
2x-1=1 y+4=11
2x=2 y=7
x=1
TH2:
2x-1=11 y+4=1
2x=12 y=-5
x=6
TH3:
2x-1=-1 y+4=-11
2x=-2 y=-15
x=-1
TH4:
2x-1=-11 y+4=-1
2x=-10 y=-5
x=-5
\(9xy-6x+3y=6\)
\(\Leftrightarrow3x.\left(3y-2\right)+3y=6\)
\(\Leftrightarrow3x.\left(3y-2\right)+3y-2=6-2\)
\(\Leftrightarrow3x.\left(3y-2\right)+\left(3y-2\right)=4\)
\(\Leftrightarrow\left(3y-2\right)+\left(3x+1\right)=6\)
Mà \(x,y\in Z\Rightarrow3y-2;3x+1\in Z\)
Lập bảng làm nốt
Bn có thể tham khảo ở đây :
Câu hỏi của tsukino usagi - Toán lớp 6 - Học toán với OnlineMath