Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D.
Do đó ta có bảng biến thiên sau:
Để hàm số nghịch biến trên khoảng (-1;1) thì
\(TXĐ:D=R\)
\(y=x^{3}-3mx^{2}-9m^{2}x\)
\(y'=3x^{2}-6mx-9m^{2}=0\)
\(\Leftrightarrow\)\(y'=3(x+m)(x-3m)=0\)
\(\left[\begin{array}{} x=-m\\ x=3m \end{array} \right.\)
\(y'<0\) \(\forall\)\(x\) \(\in\)\((0,1)\).Ta xét các trường hợp
\(TH1:-m\)\(\le\)\(0\)\(<1\)\(\le\)\(3m\)
\(\Leftrightarrow\)\(m \)\(\ge\)\(\dfrac{1}{3}\)
\(TH2:3m\)\(\le\)\(0\)<\(1\)\(\le\)\(-m\)
\(\Leftrightarrow\)\(m\)\(\le\)\(-1\)
Vậy \(m\)\(\ge\)\(\dfrac{1}{3}\) hoặc \(m\)\(\le\)\(-1\)
\(\Leftrightarrow\)\(m \)\(\ge\)\(\dfrac{1}{3}\)
\(y=\dfrac{mx+6}{2x+m+1}\Rightarrow y'=\dfrac{m\left(m+1\right)-12}{\left(2x+m+1\right)^2}\)
Hàm nghịch biến trên khoảng đã cho khi:
\(\left\{{}\begin{matrix}m\left(m+1\right)-12< 0\\\left[{}\begin{matrix}-\dfrac{m+1}{2}>1\\-\dfrac{m+1}{2}< -1\end{matrix}\right.\\\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-4< m< 3\\\left[{}\begin{matrix}m< -3\\m>1\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-4< m< -3\\1< m< 3\end{matrix}\right.\)
Đáp án C
Phương pháp:
Hàm số y = f(x) nghịch biến trên D khi và chỉ khi và bằng 0 tại hữu hạn điểm
Cách giải:
Ta có:
Hàm số đã cho nghịch biến trên
Xét hàm số: ta có:
Chọn đáp án D.
Do đó để phương trình f sin x = m có nghiệm trong khoảng (0;p)
thì phương trình f t = m có nghiệm t ∈ ( 0 ; 1 ]
Quan sát đồ thị thấy phương trình f t = m có nghiệm t ∈ ( 0 ; 1 ] khi - 1 ≤ m < 1
Chọn B