K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2017

Chọn D.

Do đó ta có bảng biến thiên sau:

Để hàm số nghịch biến trên khoảng (-1;1) thì 

1 tháng 10 2018

25 tháng 10 2018

Đáp án D

12 tháng 11 2019



29 tháng 8 2021

\(TXĐ:D=R\)

\(y=x^{3}-3mx^{2}-9m^{2}x\)

\(y'=3x^{2}-6mx-9m^{2}=0\)

\(\Leftrightarrow\)\(y'=3(x+m)(x-3m)=0\)

\(\left[\begin{array}{} x=-m\\ x=3m \end{array} \right.\)

\(y'<0\) \(\forall\)\(x\) \(\in\)\((0,1)\).Ta xét các trường hợp

\(TH1:-m\)\(\le\)\(0\)\(<1\)\(\le\)\(3m\)

\(\Leftrightarrow\)\(m \)\(\ge\)\(\dfrac{1}{3}\)

\(TH2:3m\)\(\le\)\(0\)<\(1\)\(\le\)\(-m\)

\(\Leftrightarrow\)\(m\)\(\le\)\(-1\)

Vậy \(m\)\(\ge\)\(\dfrac{1}{3}\) hoặc \(m\)\(\le\)\(-1\)

\(\Leftrightarrow\)\(m \)\(\ge\)\(\dfrac{1}{3}\)

29 tháng 8 2021

cái tương đương dưới cùng là sai nha.Nó bị nhảy

8 tháng 1 2017

NV
5 tháng 8 2021

\(y=\dfrac{mx+6}{2x+m+1}\Rightarrow y'=\dfrac{m\left(m+1\right)-12}{\left(2x+m+1\right)^2}\)

Hàm nghịch biến trên khoảng đã cho khi:

\(\left\{{}\begin{matrix}m\left(m+1\right)-12< 0\\\left[{}\begin{matrix}-\dfrac{m+1}{2}>1\\-\dfrac{m+1}{2}< -1\end{matrix}\right.\\\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-4< m< 3\\\left[{}\begin{matrix}m< -3\\m>1\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-4< m< -3\\1< m< 3\end{matrix}\right.\)

3 tháng 11 2017

Đáp án C

Phương pháp:

Hàm số y = f(x) nghịch biến trên D khi và chỉ khi  và bằng 0 tại hữu hạn điểm

Cách giải:

Ta có: 

Hàm số đã cho nghịch biến trên 

Xét hàm số: ta có:


1 tháng 3 2017

Chọn đáp án D.

Do đó để phương trình f sin x = m có nghiệm trong khoảng (0;p)

thì phương trình  f t = m có nghiệm t ∈ ( 0 ; 1 ]  

Quan sát đồ thị thấy phương trình  f t = m  có nghiệm  t ∈ ( 0 ; 1 ]  khi  - 1 ≤ m < 1