Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét 1 trong a hoặc b là số nguyên tố lẻ thì 0<a,b<10.
+ Các số nguyên tố thõa mãn là 3;5;7.
=> Số còn lại lần lượt là 7;5;3
=> Chỉ có các số nguyên tố 3,7,9 thõa mãn.
. Nếu 1 trong 2 a,b là số chẵn ( = 2,4,6,8) thì hai số luôn có ước 1, 2, chính nó,..... không nguyên tố cùng nhau.
+ Các số lẻ còn lại chỉ còn số 9 thõa mãn.
=> Số còn lại bằng 1
Bạn tự xét các cặp a,b nha
b) số nguyên tố chỉ có 2 ước là 1 và chính nó:
nếu tổng các ước là 1 => 1 + số đó = 18 => số đó = 18 - 1 = 17 là số nguyên tố (nhận)
Nếu tổng các ước là 19 => 1 + số đó = 19 => số đó = 19 - 1 = 18 không là số nguyên tố => không tồn tại
1) +) Nếu cả hai số nguyên tố đều > 3 => 2 số đó lẻ => tổng và hiệu của chúng là số chẵn => Loại
=> Trong hai số đó có 1 số bằng 2. gọi số còn lại là a
+) Nếu a = 3 : ta có 3 + 2 = 5 ; 3 -2 = 1, 1 không là số nguyên tố => Loại
+) Nếu > 3 thì có thể có dạng: 3k + 1 ( k \(\in\)N*) hoặc 3k + 2 (k \(\in\) N*)
Khi a = 3k + 1 => a+ 2 = 3k + 3 = 3.(k + 1) là hợp số với k \(\in\) N* => Loại
Khi a = 3k + 2 => a + 2 = 3k + 4 ; a - 2 = 3k . 3k; 3k + 4 đều là số nguyên tố với k = 1 . Với k > 1 thì 3k là hợp số nên Loại
Vậy a = 3. 1+ 2 = 5
Vậy chỉ có 2 số 2;5 thỏa mãn