K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt \(p^n+144=a^2\left(a\in N\right)\)

\(\Rightarrow p^n=\left(a-12\right)\left(a+12\right)\)

Ta thấy : \(a-12+a+12=2a⋮2\)

\(\Rightarrow\left(a-12\right)\left(a+12\right)⋮2\)

\(\Rightarrow p^n⋮2\) mà $p$ nguyên tố \(\Rightarrow p=2\)

Khi đó ta có : \(2^n=\left(a-12\right)\left(a+12\right)\)

\(\Rightarrow\left\{{}\begin{matrix}2^x=a-12\\2^y=a+12\end{matrix}\right.\) với $x+y=a; x,y \in N$,  \(y>x\)

\(\Rightarrow2^y-2^x=24\Rightarrow2^x\left(2^{y-x}-1\right)=24\)

Rồi bạn xét các TH để tìm ra giá trị đề bài nhé! Đến đây dễ rồi.

AH
Akai Haruma
Giáo viên
10 tháng 9 2023

a)Giả sử tồn tại số nguyên n sao cho \(n^2+2002\)là số chình phương.

\(\Rightarrow n^2+2002=a^2\left(a\inℕ^∗\right)\)

\(\Rightarrow a^2-n^2=2002\)

\(\Rightarrow a^2+an-an-n^2=2002\)

\(\Rightarrow a\left(a+n\right)-n\left(a+n\right)=2002\)

\(\Rightarrow\left(a-n\right)\left(a+n\right)=2002\)

Mà \(2002⋮2\)\(\Rightarrow\orbr{\begin{cases}a-n⋮2\\a+n⋮2\end{cases}\left(1\right)}\)

Ta có : \(\left(a+n\right)-\left(a-n\right)=-2n\)

\(\Rightarrow\)\(a-n\)và \(a+n\)có cùng tính chẵn lẻ \(\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\hept{\begin{cases}a-n⋮2\\a+n⋮2\end{cases}}\)

Vì 2 là số nguyên tố \(\Rightarrow\left(a-n\right)\left(a+n\right)⋮4\)

mà 2002 không chia hết cho 4

\(\Rightarrow\)Mâu thuẫn

\(\Rightarrow\)Điều giả sử là sai

\(\Rightarrow\)Không tồn tại số nguyên n thỏa mãn đề bài

22 tháng 2 2019

Với n nguyên dương.

Đặt A=\(n^{2015}+n+1=\left(n^{2015}-n^2\right)+\left(n^2+n+1\right)=n^2\left(n^{2013}-1\right)+\left(n^2+n+1\right)\)

\(=n^2\left(\left(n^3\right)^{.671}-1\right)+\left(n^2+n+1\right)\)

Mà : \(\left(n^3\right)^{.671}-1⋮\left(n^3-1\right)\)

 và       \(n^3-1=\left(n-1\right)\left(n^2+n+1\right)\)

=> \(\left(n^3\right)^{671}-1⋮\left(n^2+n+1\right)\)

=> \(A⋮n^2+n+1\)

Theo bài ra: A là số nguyên tố

=> \(\orbr{\begin{cases}A=n^2+n+1\\n^2+n+1=1\end{cases}\Leftrightarrow\orbr{\begin{cases}n^{2015}=n^2\\n^2+n=0\end{cases}\Leftrightarrow}}\orbr{\begin{cases}n=1\left(tm\right)\\n=0;n=-1\left(loai\right)\end{cases}}\)vì n nguyên dương

Vậy n=1

26 tháng 8 2020

Xét n=1 thì biểu thức A = 3

Xét n>1:

Ta có: \(A=n^{2015}+n+1\)

\(=\left(n^{2015}-n^2\right)+\left(n^2+n+1\right)\)

\(=n^2\left(n^{2013}-1\right)+\left(n^2+n+1\right)\)

Dễ nhận ra \(n^{2013}-1⋮n^3-1\Rightarrow n^{2013}-1=k\left(n^3-1\right)=k\left(n-1\right)\left(n^2+n+1\right)\)

\(\Rightarrow n^2\left(n^{2013}-1\right)=k\left(n-1\right)n^2\left(n^2+n+1\right)=k'\left(n^2+n+1\right)\)

\(\Rightarrow A=k'\left(n^2+n+1\right)+\left(n^2+n+1\right)=\left(n^2+n+1\right)\left(k'+1\right)\)là hợp số

Vậy n=1

AH
Akai Haruma
Giáo viên
9 tháng 9 2023

Lời giải:

Đặt tổng trên là $A$.

Với $n=1$ thì $2^n+3^n+4^n=9$ là scp (thỏa mãn)

Xét $n\geq 2$. Khi đó:

$2^n\equiv 0\pmod 4; 4^n\equiv 0\pmod 4$

$\Rightarrow A=2^n+3^n+4^n\equiv 3^n\equiv (-1)^n\pmod 4$

Vì 1 scp khi chia 4 chỉ có thể có dư là $0$ hoặc $1$ nên $n$ phải là số chẵn.

Đặt $n=2k$ với $k$ nguyên dương.

Khi đó: $A=2^{2k}+3^{2k}+4^{2k}\equiv (-1)^{2k}+0+1^{2k}\equiv 2\pmod 3$
Một scp khi chia 3 chỉ có thể có dư là 0 hoặc 1 nên việc chia 3 dư 2 như trên là vô lý

Vậy TH $n\geq 2$ không thỏa mãn. Tức là chỉ có 1 giá trị $n=1$ thỏa mãn.

 

18 tháng 5 2019

Với n=1=>P=2(thỏa mãn)

Với n>1=>n chẵn=>nnlà số chính phương<=> P tận cùng là 5 hoặc 7

Với P tận cùng 5 chỉ có P=5 thỏa mãn

Với P tận cùng là 7 thì có:17;37;...