K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2017

\(pt\Leftrightarrow\frac{\sqrt{y-4}}{y}+\frac{\sqrt{x-4}}{x}=\frac{1}{2}\)

Áp dụng BĐT AM-GM ta có: 

\(\frac{\sqrt{y-4}}{y}=\frac{\sqrt{4\left(y-4\right)}}{2y}\le\frac{4+y-4}{2\cdot2y}=\frac{1}{4}\)

Tương tự ta cũng có \(\frac{\sqrt{x-4}}{x}\le\frac{1}{4}\)

Cộng theo vế ta có Đpcm

Dấu "=" xảy ra khi x=y, thay vào giải ra ta dc x=y=8

16 tháng 7 2018

pt đã cho <=>\(\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)-2\left(x+y\right)-\left(x+y+2\sqrt{xy}\right)+2\sqrt{xy}+4\left(\sqrt{x}+\sqrt{y}\right)-4=0\)

<=>\(\left(\sqrt{x}+\sqrt{y}\right)\left(x+y\right)-\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)-2\left(x+y\right)+2\sqrt{xy}-\left(\sqrt{x}+\sqrt{y}-2\right)^2=0\)

<=>\(\left(\sqrt{x}+\sqrt{y}-2\right)\left(x+y-\sqrt{xy}-\sqrt{x}-\sqrt{y}+2\right)=0\)

<=>\(\orbr{\begin{cases}\sqrt{x}+\sqrt{y}=2\\x+y-\sqrt{xy}-\sqrt{x}-\sqrt{y}+2=0\end{cases}}\)

th2: nhân cả hai vế với 2 ta được

\(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{x}-1\right)^2+\left(\sqrt{y}-1\right)^2+2>0\)

=>th2 vô nghiệm

do đó M=\(\sqrt{xy}\)

áp dụng bdt cô si ta có \(\sqrt{x}+\sqrt{y}>=2\sqrt{\sqrt{xy}}\)

<=>1>=\(\sqrt{\sqrt{xy}}\)(do \(\sqrt{x}+\sqrt{y}=2\))

<=>\(\sqrt{xy}< =1\)

<=>M<=1

NV
1 tháng 9 2021

Đặt \(\left\{{}\begin{matrix}\sqrt{2x+3}=a\ge0\\\sqrt{y}=b\ge0\end{matrix}\right.\)

\(\Rightarrow b\left(b^2+1\right)-3a^2=\left(a^2+1\right)a-3b^2\)

\(\Rightarrow a^3-b^3+3a^2-3b^2+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a-b\right)\left(3a+3b\right)+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+3a+3b+1\right)=0\)

\(\Leftrightarrow a=b\Rightarrow\sqrt{2x+3}=\sqrt{y}\)

\(\Rightarrow y=2x+3\)

\(\Rightarrow M=x\left(2x+3\right)+3\left(2x+3\right)-4x^2-3\) tới đây chắc chỉ cần bấm máy

23 tháng 9 2019

ĐKXĐ: x;y>=4

\(2.\left(x\sqrt{y-4}+y\sqrt{x-4}\right)=xy\)

\(\Leftrightarrow x.\sqrt{4}.\sqrt{y-4}+y.\sqrt{4}.\sqrt{x-4}=xy\)

Theo AM-GM ta có:

\(VT\le x.\frac{y}{2}+y.\frac{x}{2}=xy=VP\)

=> VT=VP<=> x=y=8

Vậy x=y=8

22 tháng 5 2019

Ta có \(\left(x-y\right)^2\ge0\forall x,y\Leftrightarrow x^2+y^2\ge2xy\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\Leftrightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}..\)

Theo giả thiết \(x^2+y^2=\left(x+y\right)\left(\sqrt{x}+\sqrt{y}-1\right)\)

\(\Rightarrow\left(x+y\right)\left(\sqrt{x}+\sqrt{y}-1\right)\ge\frac{\left(x+y\right)^2}{2}\)

Mà x,y>1/4\(\Rightarrow\sqrt{x}+\sqrt{y}-1\ge\frac{x+y}{2}\)

                \(\Leftrightarrow x+y\le2\sqrt{x}+2\sqrt{y}-2\)

               \(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left(y-2\sqrt{y}+1\right)\le0\)

              \(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y}-1\right)^2\le0\)

Mà \(\hept{\begin{cases}\left(\sqrt{x}-1\right)^2\ge0\\\left(\sqrt{y}-1\right)^2\ge0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\left(\sqrt{x}-1\right)^2=0\\\left(\sqrt{y}-1\right)^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}\sqrt{x}=1\\\sqrt{y}=1\end{cases}\Leftrightarrow}x=y=1\left(TMĐK\right).\)

\(\left(x^2-x+1\right)\left(xy+y^2\right)=3x-1\left(1\right)\)

\(3x-1⋮x^2-x+1\)

zì \(lim\left(x\rightarrow\infty\right)\frac{3x-1}{x^2-x+1}=0\)

zà thấy x=2 thỏa mãn ,=> x=1

thay zô 1 ta có

\(1\left(y+y^2\right)=2=>y^2+y-2=0=>\orbr{\begin{cases}y=1\\y=-2\end{cases}}\)

zậy \(\left(x,y\right)\in\left\{\left(1,1\right)\left(1,-2\right)\right\}\)