Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D.
Đặt t = cos 3 x , ( - 1 ≤ t ≤ 1 ) Phương trình trở thành 2 t 2 + ( 3 - 2 m ) t + m - 2 = 0
Ta có ∆ = 2 m - 5 2 Suy ra phương trình có hai nghiệm t 1 = 1 2 t 2 = m - 2
Trường hợp 1:
Với t 1 = 1 2 → cos 3 x = 1 2 ⇔ 3 x = π 3 + k 2 π 3 x = - π 3 + k 2 π ⇔ x = π 9 + k 2 π 3 x = - π 9 + k 2 π 3
* Với x = π 9 + k 2 π 3 và x ∈ - π 6 ; π 3 thì - π 6 < - π 9 + k 2 π 3 < π 3 ⇔ 1 12 < k < 2 3
Do k ∈ ℤ nên k = 0 → x = - π 9
* Với x = - π 9 + k 2 π 3 và x ∈ - π 6 ; π 3 thì - π 6 < - π 9 + k 2 π 3 < π 3 ⇔ - 1 12 < k < 2 3
Do k ∈ ℤ nên k = 0 → x = - π 9
Suy ra phương trình đã cho luôn có hai nghiệm trên khoảng - π 6 ; π 3
Trường hợp 2: Với t 2 = m - 2 → cos 3 x = m - 2 Xét f ( x ) = cos 3 x trên - π 6 ; π 3
Đạo hàm f ' ( x ) = - 3 sin 3 x ; f ' ( x ) = 0 ⇔ x = 0 ∈ - π 6 ; π 3
Bảng biến thiên:
Để phương trình đã cho có 3 nghiệm trên
-
π
6
;
π
3
khi và chỉ khi phương trình
cos
3
x
=
m
-
2
có 1 nghiệm trên
-
π
6
;
π
3
, hay đồ thị
f
(
x
)
=
cos
3
x
cắt đường thẳng
y
=
m
-
2
tại đúng 1 điểm. Quan sát bảng biến thiên, suy ra
-
1
≤
m
-
2
<
0
⇔
1
≤
m
<
2
Đáp án D
⇔ 1 + cos x cos 4 x − m cos x − m + m cos x = 0
⇔ 1 + cos x cos 4 x − m = 0 ⇔ cos x = − 1 1 cos 4 x = m 2 1 ⇔ x = π + k 2 π k ∈ ℤ ; x = π + k 2 π ∈ 0 ; 2 π 3 ⇒ k ∈ ∅
Đáp án B
Ta có:
x 3 − 3 x 2 + m x + 2 − m = 0 ⇔ x − 1 x 2 − 2 x + m − 2 = 0 ⇔ x = 1 x 2 − 2 x + m − 2 = 0 2
(2) có 2 nghiệm nếu = 1 − m − 2 ≥ 0 ⇔ m ≤ 3 .
Khi đó 2 nghiệm là:
x 1 = 1 + 3 − m ; x 2 = 1 − 3 − m
Ta thấy 3 giá trị 1 + 3 − m ; 1 ; 1 − 3 − m theo thứ tự luôn lập thành một cấp số cộng.
Vậy m ≤ 3
Đáp án B
Điều kiện: − 1 < x ≠ 2
Phương trình đã cho
⇔ log 3 2 x − 2 x + 1 = m ⇔ x − 2 x + 1 = 3 2 m *
Xét hàm số f x = x − 2 x + 1 với x ∈ − 1 ; 2 ∪ 2 ; + ∞
f x = h x = x 2 − x − 2 khi x > 2 g x = − x 2 + x + 2 khi − 1 < x < 2
Dựa vào đồ thị để phương trình (*) có 3 nghiệm phân biệt
⇔ 0 < 3 2 m < max − 1 ; 2 g x = 9 4 ⇔ m < 2
Đáp án C
để phương trình: 2sinx + mcosx - 2m = 0 có nghiệm
2 2 + m 2 ≥ 2 m 2 ⇔ m 2 ≤ 4 3 ⇔ - 2 3 ≤ m ≤ 2 3